Cargando…
Improving deep learning-based protein distance prediction in CASP14
MOTIVATION: Accurate prediction of residue–residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CA...
Autores principales: | Guo, Zhiye, Wu, Tianqi, Liu, Jian, Hou, Jie, Cheng, Jianlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504632/ https://www.ncbi.nlm.nih.gov/pubmed/33961009 http://dx.doi.org/10.1093/bioinformatics/btab355 |
Ejemplares similares
-
Improving protein tertiary structure prediction by deep learning and distance prediction in CASP14
por: Liu, Jian, et al.
Publicado: (2021) -
Protein model accuracy estimation empowered by deep learning and inter-residue distance prediction in CASP14
por: Chen, Xiao, et al.
Publicado: (2021) -
Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13
por: Hou, Jie, et al.
Publicado: (2019) -
MULTICOM2 open-source protein structure prediction system powered by deep learning and distance prediction
por: Wu, Tianqi, et al.
Publicado: (2021) -
Improving AlphaFold2-based protein tertiary structure prediction with MULTICOM in CASP15
por: Liu, Jian, et al.
Publicado: (2023)