Cargando…
Classifying and tracking rehabilitation interventions through machine-learning algorithms in individuals with stroke
INTRODUCTION: Stroke is the leading cause of disability worldwide. It has been well-documented that rehabilitation (rehab) therapy can aid in regaining health and function for individuals with stroke. Yet, tracking in-home rehab continues to be a challenge because of a lack of resources and populati...
Autores principales: | Espinoza Bernal, Victor C, Hiremath, Shivayogi V, Wolf, Bethany, Riley, Brooke, Mendonca, Rochelle J, Johnson, Michelle J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504690/ https://www.ncbi.nlm.nih.gov/pubmed/34646574 http://dx.doi.org/10.1177/20556683211044640 |
Ejemplares similares
-
Potential of social engagement for overcoming barriers to physical activity in individuals with spinal cord injury
por: Canori, Alexandra, et al.
Publicado: (2023) -
Considerations for at-home upper-limb rehabilitation technology following stroke: Perspectives of stroke survivors and therapists
por: Forbrigger, Shane, et al.
Publicado: (2023) -
The Use of Machine Learning Techniques to Predict Deep Vein
Thrombosis in Rehabilitation Inpatients
por: Hou, Tingting, et al.
Publicado: (2023) -
Differential Diagnostic Value of Machine Learning–Based Models for Embolic Stroke
por: Kuo, HsunYu, et al.
Publicado: (2023) -
Development of a measure of knowledge use by stakeholders in rehabilitation technology
por: Stone, Vathsala I, et al.
Publicado: (2014)