Cargando…

Enhancing breakpoint resolution with deep segmentation model: A general refinement method for read-depth based structural variant callers

Read-depths (RDs) are frequently used in identifying structural variants (SVs) from sequencing data. For existing RD-based SV callers, it is difficult for them to determine breakpoints in single-nucleotide resolution due to the noisiness of RD data and the bin-based calculation. In this paper, we pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yao-zhong, Imoto, Seiya, Miyano, Satoru, Yamaguchi, Rui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504719/
https://www.ncbi.nlm.nih.gov/pubmed/34634042
http://dx.doi.org/10.1371/journal.pcbi.1009186
Descripción
Sumario:Read-depths (RDs) are frequently used in identifying structural variants (SVs) from sequencing data. For existing RD-based SV callers, it is difficult for them to determine breakpoints in single-nucleotide resolution due to the noisiness of RD data and the bin-based calculation. In this paper, we propose to use the deep segmentation model UNet to learn base-wise RD patterns surrounding breakpoints of known SVs. We integrate model predictions with an RD-based SV caller to enhance breakpoints in single-nucleotide resolution. We show that UNet can be trained with a small amount of data and can be applied both in-sample and cross-sample. An enhancement pipeline named RDBKE significantly increases the number of SVs with more precise breakpoints on simulated and real data. The source code of RDBKE is freely available at https://github.com/yaozhong/deepIntraSV.