Cargando…
Enhancing breakpoint resolution with deep segmentation model: A general refinement method for read-depth based structural variant callers
Read-depths (RDs) are frequently used in identifying structural variants (SVs) from sequencing data. For existing RD-based SV callers, it is difficult for them to determine breakpoints in single-nucleotide resolution due to the noisiness of RD data and the bin-based calculation. In this paper, we pr...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504719/ https://www.ncbi.nlm.nih.gov/pubmed/34634042 http://dx.doi.org/10.1371/journal.pcbi.1009186 |
Sumario: | Read-depths (RDs) are frequently used in identifying structural variants (SVs) from sequencing data. For existing RD-based SV callers, it is difficult for them to determine breakpoints in single-nucleotide resolution due to the noisiness of RD data and the bin-based calculation. In this paper, we propose to use the deep segmentation model UNet to learn base-wise RD patterns surrounding breakpoints of known SVs. We integrate model predictions with an RD-based SV caller to enhance breakpoints in single-nucleotide resolution. We show that UNet can be trained with a small amount of data and can be applied both in-sample and cross-sample. An enhancement pipeline named RDBKE significantly increases the number of SVs with more precise breakpoints on simulated and real data. The source code of RDBKE is freely available at https://github.com/yaozhong/deepIntraSV. |
---|