Cargando…
A Relaxed Interior Point Method for Low-Rank Semidefinite Programming Problems with Applications to Matrix Completion
A new relaxed variant of interior point method for low-rank semidefinite programming problems is proposed in this paper. The method is a step outside of the usual interior point framework. In anticipation to converging to a low-rank primal solution, a special nearly low-rank form of all primal itera...
Autores principales: | Bellavia, Stefania, Gondzio, Jacek, Porcelli, Margherita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504795/ https://www.ncbi.nlm.nih.gov/pubmed/34658507 http://dx.doi.org/10.1007/s10915-021-01654-1 |
Ejemplares similares
-
Aspects of semidefinite programming: interior point algorithms and selected applications
por: Klerk, Etienne
Publicado: (2004) -
Fast interior point solution of quadratic programming problems arising from PDE-constrained optimization
por: Pearson, John W., et al.
Publicado: (2017) -
Doubly Nonnegative and Semidefinite Relaxations for the Densest k-Subgraph Problem
por: Guo, Chuan-Hao, et al.
Publicado: (2019) -
A specialized primal-dual interior point method for the plastic truss layout optimization
por: Weldeyesus, Alemseged Gebrehiwot, et al.
Publicado: (2018) -
Approximation Algorithms and Semidefinite Programming
por: Gärtner, Bernd, et al.
Publicado: (2012)