Cargando…
The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome
Great progress has been made over the past 18 months in scientific understanding of the biology, epidemiology and pathogenesis of SARS-CoV-2. Extraordinary advances have been made in vaccine development and the execution of clinical trials of possible therapies. However, uncertainties remain, and th...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504893/ https://www.ncbi.nlm.nih.gov/pubmed/34956588 http://dx.doi.org/10.1098/rsfs.2021.0008 |
_version_ | 1784581415677984768 |
---|---|
author | Anderson, Roy M. Vegvari, Carolin Hollingsworth, T. Déirdre Pi, Li Maddren, Rosie Ng, Chi Wai Baggaley, Rebecca F. |
author_facet | Anderson, Roy M. Vegvari, Carolin Hollingsworth, T. Déirdre Pi, Li Maddren, Rosie Ng, Chi Wai Baggaley, Rebecca F. |
author_sort | Anderson, Roy M. |
collection | PubMed |
description | Great progress has been made over the past 18 months in scientific understanding of the biology, epidemiology and pathogenesis of SARS-CoV-2. Extraordinary advances have been made in vaccine development and the execution of clinical trials of possible therapies. However, uncertainties remain, and this review assesses these in the context of virus transmission, epidemiology, control by social distancing measures and mass vaccination and the effect on all of these on emerging variants. We briefly review the current state of the global pandemic, focussing on what is, and what is not, well understood about the parameters that control viral transmission and make up the constituent parts of the basic reproductive number R(0). Major areas of uncertainty include factors predisposing to asymptomatic infection, the population fraction that is asymptomatic, the infectiousness of asymptomatic compared to symptomatic individuals, the contribution of viral transmission of such individuals and what variables influence this. The duration of immunity post infection and post vaccination is also currently unknown, as is the phenotypic consequences of continual viral evolution and the emergence of many viral variants not just in one location, but globally, given the high connectivity between populations in the modern world. The pattern of spread of new variants is also examined. We review what can be learnt from contact tracing, household studies and whole-genome sequencing, regarding where people acquire infection, and how households are seeded with infection since they constitute a major location for viral transmission. We conclude by discussing the challenges to attaining herd immunity, given the uncertainty in the duration of vaccine-mediated immunity, the threat of continued evolution of the virus as demonstrated by the emergence and rapid spread of the Delta variant, and the logistics of vaccine manufacturing and delivery to achieve universal coverage worldwide. Significantly more support from higher income countries (HIC) is required in low- and middle-income countries over the coming year to ensure the creation of community-wide protection by mass vaccination is a global target, not one just for HIC. Unvaccinated populations create opportunities for viral evolution since the net rate of evolution is directly proportional to the number of cases occurring per unit of time. The unit for assessing success in achieving herd immunity is not any individual country, but the world. |
format | Online Article Text |
id | pubmed-8504893 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-85048932022-02-02 The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome Anderson, Roy M. Vegvari, Carolin Hollingsworth, T. Déirdre Pi, Li Maddren, Rosie Ng, Chi Wai Baggaley, Rebecca F. Interface Focus Articles Great progress has been made over the past 18 months in scientific understanding of the biology, epidemiology and pathogenesis of SARS-CoV-2. Extraordinary advances have been made in vaccine development and the execution of clinical trials of possible therapies. However, uncertainties remain, and this review assesses these in the context of virus transmission, epidemiology, control by social distancing measures and mass vaccination and the effect on all of these on emerging variants. We briefly review the current state of the global pandemic, focussing on what is, and what is not, well understood about the parameters that control viral transmission and make up the constituent parts of the basic reproductive number R(0). Major areas of uncertainty include factors predisposing to asymptomatic infection, the population fraction that is asymptomatic, the infectiousness of asymptomatic compared to symptomatic individuals, the contribution of viral transmission of such individuals and what variables influence this. The duration of immunity post infection and post vaccination is also currently unknown, as is the phenotypic consequences of continual viral evolution and the emergence of many viral variants not just in one location, but globally, given the high connectivity between populations in the modern world. The pattern of spread of new variants is also examined. We review what can be learnt from contact tracing, household studies and whole-genome sequencing, regarding where people acquire infection, and how households are seeded with infection since they constitute a major location for viral transmission. We conclude by discussing the challenges to attaining herd immunity, given the uncertainty in the duration of vaccine-mediated immunity, the threat of continued evolution of the virus as demonstrated by the emergence and rapid spread of the Delta variant, and the logistics of vaccine manufacturing and delivery to achieve universal coverage worldwide. Significantly more support from higher income countries (HIC) is required in low- and middle-income countries over the coming year to ensure the creation of community-wide protection by mass vaccination is a global target, not one just for HIC. Unvaccinated populations create opportunities for viral evolution since the net rate of evolution is directly proportional to the number of cases occurring per unit of time. The unit for assessing success in achieving herd immunity is not any individual country, but the world. The Royal Society 2021-10-12 /pmc/articles/PMC8504893/ /pubmed/34956588 http://dx.doi.org/10.1098/rsfs.2021.0008 Text en © 2021 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Articles Anderson, Roy M. Vegvari, Carolin Hollingsworth, T. Déirdre Pi, Li Maddren, Rosie Ng, Chi Wai Baggaley, Rebecca F. The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome |
title | The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome |
title_full | The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome |
title_fullStr | The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome |
title_full_unstemmed | The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome |
title_short | The SARS-CoV-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome |
title_sort | sars-cov-2 pandemic: remaining uncertainties in our understanding of the epidemiology and transmission dynamics of the virus, and challenges to be overcome |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504893/ https://www.ncbi.nlm.nih.gov/pubmed/34956588 http://dx.doi.org/10.1098/rsfs.2021.0008 |
work_keys_str_mv | AT andersonroym thesarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT vegvaricarolin thesarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT hollingsworthtdeirdre thesarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT pili thesarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT maddrenrosie thesarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT ngchiwai thesarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT baggaleyrebeccaf thesarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT andersonroym sarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT vegvaricarolin sarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT hollingsworthtdeirdre sarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT pili sarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT maddrenrosie sarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT ngchiwai sarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome AT baggaleyrebeccaf sarscov2pandemicremaininguncertaintiesinourunderstandingoftheepidemiologyandtransmissiondynamicsofthevirusandchallengestobeovercome |