Cargando…
A Bayesian network approach incorporating imputation of missing data enables exploratory analysis of complex causal biological relationships
Bayesian networks can be used to identify possible causal relationships between variables based on their conditional dependencies and independencies, which can be particularly useful in complex biological scenarios with many measured variables. Here we propose two improvements to an existing method...
Autores principales: | Howey, Richard, Clark, Alexander D., Naamane, Najib, Reynard, Louise N., Pratt, Arthur G., Cordell, Heather J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8504979/ https://www.ncbi.nlm.nih.gov/pubmed/34587167 http://dx.doi.org/10.1371/journal.pgen.1009811 |
Ejemplares similares
-
Imputation Without Doing Imputation: A New Method for the Detection of Non-Genotyped Causal Variants
por: Howey, Richard, et al.
Publicado: (2014) -
Bayesian network analysis incorporating genetic anchors complements conventional Mendelian randomization approaches for exploratory analysis of causal relationships in complex data
por: Howey, Richard, et al.
Publicado: (2020) -
Confirmation of the superior performance of the causal Graphical Analysis Using Genetics (cGAUGE) pipeline in comparison to various competing alternatives
por: Howey, Richard, et al.
Publicado: (2022) -
Application of Bayesian networks to GAW20 genetic and blood lipid data
por: Howey, Richard A. J., et al.
Publicado: (2018) -
Graphical Causal Models and Imputing Missing Data: A Preliminary Study
por: Almeida, Rui Jorge, et al.
Publicado: (2020)