Cargando…
Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network
Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine learning (ML) techniques has also shown their eff...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505090/ https://www.ncbi.nlm.nih.gov/pubmed/34646334 http://dx.doi.org/10.1155/2021/4186666 |
_version_ | 1784581452447350784 |
---|---|
author | Sethi, Monika Ahuja, Sachin Rani, Shalli Bawa, Puneet Zaguia, Atef |
author_facet | Sethi, Monika Ahuja, Sachin Rani, Shalli Bawa, Puneet Zaguia, Atef |
author_sort | Sethi, Monika |
collection | PubMed |
description | Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine learning (ML) techniques has also shown their effectiveness and its reliability as one of the better options for an early diagnosis of AD. But the heterogeneous dimensions and composition of the disease data have undoubtedly made diagnostics more difficult, needing a sufficient model choice to overcome the difficulty. Therefore, in this paper, four different 2D and 3D convolutional neural network (CNN) frameworks based on Bayesian search optimization are proposed to develop an optimized deep learning model to predict the early onset of AD binary and ternary classification on magnetic resonance imaging (MRI) scans. Moreover, certain hyperparameters such as learning rate, optimizers, and hidden units are to be set and adjusted for the performance boosting of the deep learning model. Bayesian optimization enables to leverage advantage throughout the experiments: A persistent hyperparameter space testing provides not only the output but also about the nearest conclusions. In this way, the series of experiments needed to explore space can be substantially reduced. Finally, alongside the use of Bayesian approaches, long short-term memory (LSTM) through the process of augmentation has resulted in finding the better settings of the model that too in less iterations with an relative improvement (RI) of 7.03%, 12.19%, 10.80%, and 11.99% over the four systems optimized with manual hyperparameters tuning such that hyperparameters that look more appealing from past data as well as the conventional techniques of manual selection. |
format | Online Article Text |
id | pubmed-8505090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-85050902021-10-12 Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network Sethi, Monika Ahuja, Sachin Rani, Shalli Bawa, Puneet Zaguia, Atef Comput Math Methods Med Research Article Alzheimer's disease (AD) is one of the most important causes of mortality in elderly people, and it is often challenging to use traditional manual procedures when diagnosing a disease in the early stages. The successful implementation of machine learning (ML) techniques has also shown their effectiveness and its reliability as one of the better options for an early diagnosis of AD. But the heterogeneous dimensions and composition of the disease data have undoubtedly made diagnostics more difficult, needing a sufficient model choice to overcome the difficulty. Therefore, in this paper, four different 2D and 3D convolutional neural network (CNN) frameworks based on Bayesian search optimization are proposed to develop an optimized deep learning model to predict the early onset of AD binary and ternary classification on magnetic resonance imaging (MRI) scans. Moreover, certain hyperparameters such as learning rate, optimizers, and hidden units are to be set and adjusted for the performance boosting of the deep learning model. Bayesian optimization enables to leverage advantage throughout the experiments: A persistent hyperparameter space testing provides not only the output but also about the nearest conclusions. In this way, the series of experiments needed to explore space can be substantially reduced. Finally, alongside the use of Bayesian approaches, long short-term memory (LSTM) through the process of augmentation has resulted in finding the better settings of the model that too in less iterations with an relative improvement (RI) of 7.03%, 12.19%, 10.80%, and 11.99% over the four systems optimized with manual hyperparameters tuning such that hyperparameters that look more appealing from past data as well as the conventional techniques of manual selection. Hindawi 2021-10-04 /pmc/articles/PMC8505090/ /pubmed/34646334 http://dx.doi.org/10.1155/2021/4186666 Text en Copyright © 2021 Monika Sethi et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Sethi, Monika Ahuja, Sachin Rani, Shalli Bawa, Puneet Zaguia, Atef Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network |
title | Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network |
title_full | Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network |
title_fullStr | Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network |
title_full_unstemmed | Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network |
title_short | Classification of Alzheimer's Disease Using Gaussian-Based Bayesian Parameter Optimization for Deep Convolutional LSTM Network |
title_sort | classification of alzheimer's disease using gaussian-based bayesian parameter optimization for deep convolutional lstm network |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505090/ https://www.ncbi.nlm.nih.gov/pubmed/34646334 http://dx.doi.org/10.1155/2021/4186666 |
work_keys_str_mv | AT sethimonika classificationofalzheimersdiseaseusinggaussianbasedbayesianparameteroptimizationfordeepconvolutionallstmnetwork AT ahujasachin classificationofalzheimersdiseaseusinggaussianbasedbayesianparameteroptimizationfordeepconvolutionallstmnetwork AT ranishalli classificationofalzheimersdiseaseusinggaussianbasedbayesianparameteroptimizationfordeepconvolutionallstmnetwork AT bawapuneet classificationofalzheimersdiseaseusinggaussianbasedbayesianparameteroptimizationfordeepconvolutionallstmnetwork AT zaguiaatef classificationofalzheimersdiseaseusinggaussianbasedbayesianparameteroptimizationfordeepconvolutionallstmnetwork |