Cargando…
Computational ECG mapping and respiratory gating to optimize stereotactic ablative radiotherapy workflow for refractory ventricular tachycardia
BACKGROUND: Stereotactic ablative radiotherapy (SAbR) is an emerging therapy for refractory ventricular tachycardia (VT). However, the current workflow is complicated, and the precision and safety in patients with significant cardiorespiratory motion and VT targets near the stomach may be suboptimal...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505208/ https://www.ncbi.nlm.nih.gov/pubmed/34667967 http://dx.doi.org/10.1016/j.hroo.2021.09.001 |
Sumario: | BACKGROUND: Stereotactic ablative radiotherapy (SAbR) is an emerging therapy for refractory ventricular tachycardia (VT). However, the current workflow is complicated, and the precision and safety in patients with significant cardiorespiratory motion and VT targets near the stomach may be suboptimal. OBJECTIVE: We hypothesized that automated 12-lead electrocardiogram (ECG) mapping and respiratory-gated therapy may improve the ease and precision of SAbR planning and facilitate safe radiation delivery in patients with refractory VT. METHODS: Consecutive patients with refractory VT were studied at 2 hospitals. VT exit sites were localized using a 3-D computational ECG algorithm noninvasively and compared to available prior invasive mapping. Radiotherapy (25 Gy) was delivered at end-expiration when cardiac respiratory motion was ≥0.6 cm or targets were ≤2 cm from the stomach. RESULTS: In 6 patients (ejection fraction 29% ± 13%), 4.2 ± 2.3 VT morphologies per patient were mapped. Overall, 7 out of 7 computational ECG mappings (100%) colocalized to the identical cardiac segment when prior invasive electrophysiology study was available. Respiratory gating was associated with smaller planning target volumes compared to nongated volumes (71 ± 7 vs 153 ± 35 cc, P < .01). In 2 patients with inferior wall VT targets close to the stomach (6 mm proximity) or significant respiratory motion (22 mm excursion), no GI complications were observed at 9- and 12-month follow-up. Implantable cardioverter-defibrillator shocks decreased from 23 ± 12 shocks/patient to 0.67 ± 1.0 (P < .001) post-SAbR at 6.0 ± 4.9 months follow-up. CONCLUSIONS: A workflow including computational ECG mapping and protocol-guided respiratory gating is feasible, is safe, and may improve the ease of SAbR planning. Studies to validate this workflow in larger populations are required. |
---|