Cargando…

IRF2 enhances RANKL-induced osteoclast differentiation via regulating NF-κB/NFATc1 signaling

Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated....

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Inyoung, Kim, Jung Ha, Kim, Kabsun, Seong, Semun, Lee, Keun-Bae, Kim, Nacksung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Biochemistry and Molecular Biology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505232/
https://www.ncbi.nlm.nih.gov/pubmed/34488926
http://dx.doi.org/10.5483/BMBRep.2021.54.9.070
Descripción
Sumario:Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast pre-cursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclasto-genesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption.