Cargando…
Predicting bloodstream infection outcome using machine learning
Bloodstream infections (BSI) are a main cause of infectious disease morbidity and mortality worldwide. Early prediction of BSI patients at high risk of poor outcomes is important for earlier decision making and effective patient stratification. We developed electronic medical record-based machine le...
Autores principales: | Zoabi, Yazeed, Kehat, Orli, Lahav, Dan, Weiss-Meilik, Ahuva, Adler, Amos, Shomron, Noam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505419/ https://www.ncbi.nlm.nih.gov/pubmed/34635696 http://dx.doi.org/10.1038/s41598-021-99105-2 |
Ejemplares similares
-
Neutrophil-to-lymphocyte ratio trend at admission predicts adverse outcome in hospitalized respiratory syncytial virus patients
por: Shusterman, Eden, et al.
Publicado: (2023) -
Prognostic value of neutrophil-to-lymphocyte ratio in COVID-19 compared with Influenza and respiratory syncytial virus infection
por: Prozan, Lior, et al.
Publicado: (2021) -
Machine learning-based prediction of COVID-19 diagnosis based on symptoms
por: Zoabi, Yazeed, et al.
Publicado: (2021) -
The Liver Can Deliver: Utility of Hepatic Function Tests as Predictors of Outcome in COVID-19, Influenza and RSV Infections
por: Ritter, Einat, et al.
Publicado: (2023) -
Serum Hypoalbuminemia Is a Long-Term Prognostic Marker in Medical Hospitalized Patients, Irrespective of the Underlying Disease
por: Oster, Howard S., et al.
Publicado: (2022)