Cargando…

Atmospheric ionization and cloud radiative forcing

Atmospheric ionization produced by cosmic rays has been suspected to influence aerosols and clouds, but its actual importance has been questioned. If changes in atmospheric ionization have a substantial impact on clouds, one would expect to observe significant responses in Earth’s energy budget. Her...

Descripción completa

Detalles Bibliográficos
Autores principales: Svensmark, Henrik, Svensmark, Jacob, Enghoff, Martin Bødker, Shaviv, Nir J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505444/
https://www.ncbi.nlm.nih.gov/pubmed/34635727
http://dx.doi.org/10.1038/s41598-021-99033-1
Descripción
Sumario:Atmospheric ionization produced by cosmic rays has been suspected to influence aerosols and clouds, but its actual importance has been questioned. If changes in atmospheric ionization have a substantial impact on clouds, one would expect to observe significant responses in Earth’s energy budget. Here it is shown that the average of the five strongest week-long decreases in atmospheric ionization coincides with changes in the average net radiative balance of 1.7 W/m[Formula: see text] (median value: 1.2 W/m[Formula: see text] ) using CERES satellite observations. Simultaneous satellite observations of clouds show that these variations are mainly caused by changes in the short-wave radiation of low liquid clouds along with small changes in the long-wave radiation, and are almost exclusively located over the pristine areas of the oceans. These observed radiation and cloud changes are consistent with a link in which atmospheric ionization modulates aerosol's formation and growth, which survive to cloud condensation nuclei and ultimately affect cloud formation and thereby temporarily the radiative balance of Earth.