Cargando…
High alert drugs screening using gradient boosting classifier
Prescription errors in high alert drugs (HAD), a group of drugs that have a high risk of complications and potential negative consequences, are a major and serious problem in medicine. Standardized hospital interventions, protocols, or guidelines were implemented to reduce the errors but were not fo...
Autores principales: | Wongyikul, Pakpoom, Thongyot, Nuttamon, Tantrakoolcharoen, Pannika, Seephueng, Pusit, Khumrin, Piyapong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505501/ https://www.ncbi.nlm.nih.gov/pubmed/34635694 http://dx.doi.org/10.1038/s41598-021-99505-4 |
Ejemplares similares
-
Bone mineral density response prediction following osteoporosis treatment using machine learning to aid personalized therapy
por: Tanphiriyakun, Thiraphat, et al.
Publicado: (2021) -
Phasic alertness boosts representational momentum
por: Yan, Junjie, et al.
Publicado: (2022) -
The role of alerting in the attentional boost effect
por: Huang, Fajie, et al.
Publicado: (2023) -
The efficacy of prophylactic metoclopramide in preventing nausea and vomiting in patients with acute pain treated with intravenous tramadol: a randomized double-blinded, placebo-controlled trial
por: Sriwiset, Haruethai, et al.
Publicado: (2023) -
VGG16 Feature Extractor with Extreme Gradient Boost Classifier for Pancreas Cancer Prediction
por: Bakasa, Wilson, et al.
Publicado: (2023)