Cargando…
Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
Using real-world evidence in biomedical research, an indispensable complement to clinical trials, requires access to large quantities of patient data that are typically held separately by multiple healthcare institutions. We propose FAMHE, a novel federated analytics system that, based on multiparty...
Autores principales: | Froelicher, David, Troncoso-Pastoriza, Juan R., Raisaro, Jean Louis, Cuendet, Michel A., Sousa, Joao Sa, Cho, Hyunghoon, Berger, Bonnie, Fellay, Jacques, Hubaux, Jean-Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505638/ https://www.ncbi.nlm.nih.gov/pubmed/34635645 http://dx.doi.org/10.1038/s41467-021-25972-y |
Ejemplares similares
-
Author Correction: Truly privacy-preserving federated analytics for precision medicine with multiparty homomorphic encryption
por: Froelicher, David, et al.
Publicado: (2021) -
Collaborative privacy-preserving analysis of oncological data using multiparty homomorphic encryption
por: Geva, Ravit, et al.
Publicado: (2023) -
Privacy-preserving semi-parallel logistic regression training with fully homomorphic encryption
por: Carpov, Sergiu, et al.
Publicado: (2020) -
Revolutionizing Medical Data Sharing Using Advanced Privacy-Enhancing Technologies: Technical, Legal, and Ethical Synthesis
por: Scheibner, James, et al.
Publicado: (2021) -
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning
por: Kurniawan, Hendra, et al.
Publicado: (2022)