Cargando…
Triplanar ensemble U-Net model for white matter hyperintensities segmentation on MR images
White matter hyperintensities (WMHs) have been associated with various cerebrovascular and neurodegenerative diseases. Reliable quantification of WMHs is essential for understanding their clinical impact in normal and pathological populations. Automated segmentation of WMHs is highly challenging due...
Autores principales: | Sundaresan, Vaanathi, Zamboni, Giovanna, Rothwell, Peter M., Jenkinson, Mark, Griffanti, Ludovica |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505759/ https://www.ncbi.nlm.nih.gov/pubmed/34325148 http://dx.doi.org/10.1016/j.media.2021.102184 |
Ejemplares similares
-
Comparison of domain adaptation techniques for white matter hyperintensity segmentation in brain MR images
por: Sundaresan, Vaanathi, et al.
Publicado: (2021) -
Modelling the distribution of white matter hyperintensities due to ageing on MRI images using Bayesian inference
por: Sundaresan, Vaanathi, et al.
Publicado: (2019) -
BIANCA (Brain Intensity AbNormality Classification Algorithm): A new tool for automated segmentation of white matter hyperintensities
por: Griffanti, Ludovica, et al.
Publicado: (2016) -
Automated lesion segmentation with BIANCA: Impact of population-level features, classification algorithm and locally adaptive thresholding
por: Sundaresan, Vaanathi, et al.
Publicado: (2019) -
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds
por: Park, Gilsoon, et al.
Publicado: (2021)