Cargando…
Automated Bacterial Classifications Using Machine Learning Based Computational Techniques: Architectures, Challenges and Open Research Issues
Bacteria are important in a variety of practical domains, including industry, agriculture, medicine etc. A very few species of bacteria are favourable to humans. Whereas, majority of them are extremely dangerous and causes variety of life threatening illness to different living organisms. Traditiona...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505783/ https://www.ncbi.nlm.nih.gov/pubmed/34658617 http://dx.doi.org/10.1007/s11831-021-09660-0 |
Sumario: | Bacteria are important in a variety of practical domains, including industry, agriculture, medicine etc. A very few species of bacteria are favourable to humans. Whereas, majority of them are extremely dangerous and causes variety of life threatening illness to different living organisms. Traditionally, this class of microbes is detected and classified using different approaches like gram staining, biochemical testing, motility testing etc. However with the availability of large amount of data and technical advances in the field of medical and computer science, the machine learning methods have been widely used and have shown tremendous performance in automatic detection of bacteria. The inclusion of latest technology employing different Artificial Intelligence techniques are greatly assisting microbiologist in solving extremely complex problems in this domain. This paper presents a review of the literature on various machine learning approaches that have been used to classify bacteria, for the period 1998–2020. The resources include research papers and book chapters from different publishers of national and international repute such as Elsevier, Springer, IEEE, PLOS, etc. The study carried out a detailed and critical analysis of penetrating different Machine learning methodologies in the field of bacterial classification along with their limitations and future scope. In addition, different opportunities and challenges in implementing these techniques in the concerned field are also presented to provide a deep insight to the researchers working in this field. |
---|