Cargando…
Focus U-Net: A novel dual attention-gated CNN for polyp segmentation during colonoscopy
BACKGROUND: Colonoscopy remains the gold-standard screening for colorectal cancer. However, significant miss rates for polyps have been reported, particularly when there are multiple small adenomas. This presents an opportunity to leverage computer-aided systems to support clinicians and reduce the...
Autores principales: | Yeung, Michael, Sala, Evis, Schönlieb, Carola-Bibiane, Rundo, Leonardo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8505797/ https://www.ncbi.nlm.nih.gov/pubmed/34507156 http://dx.doi.org/10.1016/j.compbiomed.2021.104815 |
Ejemplares similares
-
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
por: Yeung, Michael, et al.
Publicado: (2022) -
Calibrating the Dice Loss to Handle Neural Network Overconfidence for Biomedical Image Segmentation
por: Yeung, Michael, et al.
Publicado: (2022) -
Gastrointestinal Tract Polyp Anomaly Segmentation on Colonoscopy Images Using Graft-U-Net
por: Ramzan, Muhammad, et al.
Publicado: (2022) -
GAR-Net: Guided Attention Residual Network for Polyp Segmentation from Colonoscopy Video Frames
por: Raymann, Joel, et al.
Publicado: (2022) -
ASCU-Net: Attention Gate, Spatial and Channel Attention U-Net for Skin Lesion Segmentation
por: Tong, Xiaozhong, et al.
Publicado: (2021)