Cargando…
A Continuously Benchmarked and Crowdsourced Challenge for Rapid Development and Evaluation of Models to Predict COVID-19 Diagnosis and Hospitalization
IMPORTANCE: Machine learning could be used to predict the likelihood of diagnosis and severity of illness. Lack of COVID-19 patient data has hindered the data science community in developing models to aid in the response to the pandemic. OBJECTIVES: To describe the rapid development and evaluation o...
Autores principales: | Yan, Yao, Schaffter, Thomas, Bergquist, Timothy, Yu, Thomas, Prosser, Justin, Aydin, Zafer, Jabeer, Amhar, Brugere, Ivan, Gao, Jifan, Chen, Guanhua, Causey, Jason, Yao, Yuxin, Bryson, Kevin, Long, Dustin R., Jarvik, Jeffrey G., Lee, Christoph I., Wilcox, Adam, Guinney, Justin, Mooney, Sean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8506231/ https://www.ncbi.nlm.nih.gov/pubmed/34633425 http://dx.doi.org/10.1001/jamanetworkopen.2021.24946 |
Ejemplares similares
-
Piloting a model-to-data approach to enable predictive analytics in health care through patient mortality prediction
por: Bergquist, Timothy, et al.
Publicado: (2020) -
A Multifaceted benchmarking of synthetic electronic health record generation models
por: Yan, Chao, et al.
Publicado: (2022) -
Combining accurate tumor genome simulation with crowdsourcing to benchmark somatic structural variant detection
por: Lee, Anna Y., et al.
Publicado: (2018) -
Reproducible biomedical benchmarking in the cloud: lessons from crowd-sourced data challenges
por: Ellrott, Kyle, et al.
Publicado: (2019) -
miRdisNET: Discovering microRNA biomarkers that are associated with diseases utilizing biological knowledge-based machine learning
por: Jabeer, Amhar, et al.
Publicado: (2023)