Cargando…

MiR-552-3p promotes malignant progression of gallbladder carcinoma by reactivating the Akt/β-catenin signaling pathway due to inhibition of the tumor suppressor gene RGMA

BACKGROUND: Gallbladder carcinoma (GBC) remains a highly lethal disease worldwide. MiR-552 family members promote the malignant progression of a variety of digestive system tumors, but the role of miR-552-3p in GBC has not been elucidated. miR-552-3p was predicted to target the 3'-untranslated...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Fengliang, Yang, Zhao, Li, Liang, Wei, Yanping, Tang, Xuewu, Liu, Shuowu, Yu, Miao, Chen, Jin, Wang, Suyang, Fu, Jingbo, Zhang, Kecheng, Yang, Pinghua, Yang, Xinwei, Chen, Zhong, Zhang, Baohua, Wang, Hongyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8506546/
https://www.ncbi.nlm.nih.gov/pubmed/34733926
http://dx.doi.org/10.21037/atm-21-2013
Descripción
Sumario:BACKGROUND: Gallbladder carcinoma (GBC) remains a highly lethal disease worldwide. MiR-552 family members promote the malignant progression of a variety of digestive system tumors, but the role of miR-552-3p in GBC has not been elucidated. miR-552-3p was predicted to target the 3'-untranslated region (3'UTR) of the mRNA for the tumor suppressor gene “repulsive guidance molecule BMP co-receptor a” (RGMA). The aim of the present study was to clarify the roles and mechanisms of miR-552-3p targeting RGMA in the malignant progression of GBC. METHODS: In vitro: expression of miR-552-3p was detected by real-time quantitative PCR (qRT-PCR) in tumor and non-tumor adjacent tissues (NATs). Lentivirus-miR-552-3p was employed to knockdown this miRNA in GBC cell lines. Stem cell-related transcription factors and markers were assessed by qRT-PCR. Cell Counting Kit-8 (CCK-8), sphere formation and transwell assays were used to determine the malignant phenotypes of GBC cells. Targeting the 3'UTR of RGMA by miR-552-3p was verified by integrated analysis including bioinformatics prediction, luciferase assays, measures of changes of gene expression and rescue experiments. In vivo: mouse models of subcutaneous tumors and lung metastases were established to observe the effect of miR-552-3p on tumorigenesis and organ metastasis, respectively. RESULTS: MiR-552-3p was abnormally highly expressed in GBC tissues and cancer stem cells. Interference with miR-552-3p in SGC-996 and GBC-SD cells significantly inhibited GBC stem cell expansion. Reciprocally, miR-552-3p promoted GBC cell proliferation, migration and invasion both in vitro and in vivo; hence, interference with this miRNA impeded the malignant progression of GBC. Furthermore, the important tumor suppressor gene RGMA was identified as a target of miR-552-3p. The effects of miR-552-3p on cell proliferation and metastasis were abrogated or enhanced by gain or loss of RGMA function, respectively. Mechanistically, miR-552-3p promoted GBC progression by reactivating the Akt/β-catenin pathway and epithelial-mesenchymal transformation (EMT). Clinically, miR-552-3p correlated with multi-malignant characteristics of GBC and acted as a prognostic marker for GBC outcome. CONCLUSIONS: MiR-552-3p promotes the malignant progression of GBC by inhibiting the mRNA of the tumor suppressor gene RGMA, resulting in reactivation of the Akt/β-catenin signaling pathway.