Cargando…

Propofol protects hippocampal neurons in sleep-deprived rats by inhibiting mitophagy and autophagy

BACKGROUND: Sleep deprivation (SD) causes a disturbance in the cognitive function of rats. While propofol has a powerful sedative and hypnotic effect and is an antioxidant, its effect on the cognitive function of rats following SD remains unknown. The purpose of this study was to explore the protect...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Weixin, Xiao, Yong, Tu, Youbing, Xiao, Fei, Lu, Yizhi, Qin, Yinying, Xie, Yubo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8506745/
https://www.ncbi.nlm.nih.gov/pubmed/34733979
http://dx.doi.org/10.21037/atm-21-3872
Descripción
Sumario:BACKGROUND: Sleep deprivation (SD) causes a disturbance in the cognitive function of rats. While propofol has a powerful sedative and hypnotic effect and is an antioxidant, its effect on the cognitive function of rats following SD remains unknown. The purpose of this study was to explore the protective effects of propofol on excessive autophagy and mitophagy in the hippocampus of rats after SD. METHODS: Adult male rats were intraperitoneally injected with 30 mg/kg of propofol after 96 hours of SD. Then we evaluated the effect of propofol on the cognitive function of sleep deprived rats by the Morris water maze. Transmission electron microscopy, Western blotting, PCR, immunohistochemistry, autophagy enhancer and autophagy inhibitor were used to study the effect of propofol on hippocampal neurons of rat with excessive autophagy and mitophagy. RESULTS: The behavioral experimental results of the Morris water maze showed that propofol improved the learning and memory ability of sleep-deprived rats. The expression of Beclin1, PINK1, parkin, p62, and LC3 protein increased significantly after sleep deprivation. While the intervention of propofol could significantly reduce the expression of these proteins, rapamycin treatment eliminated this effect. CONCLUSIONS: Our findings showed that propofol could reduce the impairment of learning and memory in sleep-deprived rats by inhibiting excessive autophagy and mitophagy in hippocampal neurons. This strategy may provide an application basis for the clinical use of propofol in patients with chronic insomnia.