Cargando…

Identifying critical genes associated with aneurysmal subarachnoid hemorrhage by weighted gene co-expression network analysis

Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening medical condition with a high mortality and disability rate. aSAH has an unclear pathogenesis, and limited treatment options are available. Here, we aimed to identify critical genes involved in aSAH pathogenesis using peripheral blood g...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Zhizhong, Wu, Qi, Cai, Wei, Xiang, Haitao, Wen, Lili, Zhang, An, Peng, Yaonan, Zhang, Xin, Wang, Handong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507255/
https://www.ncbi.nlm.nih.gov/pubmed/34542421
http://dx.doi.org/10.18632/aging.203542
Descripción
Sumario:Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening medical condition with a high mortality and disability rate. aSAH has an unclear pathogenesis, and limited treatment options are available. Here, we aimed to identify critical genes involved in aSAH pathogenesis using peripheral blood gene expression data of 43 patients with aSAH due to ruptured intracranial aneurysms and 18 controls with headache, downloaded from Gene Expression Omnibus. These data were used to construct a co-expression network using weighted gene co-expression network analysis (WGCNA). The biological functions of the hub genes were explored, and critical genes were selected by combining with differentially expressed genes analysis. Fourteen modules were identified by WGCNA. Among those modules, red, blue, brown and cyan modules were closely associated with aSAH. Moreover, 364 hub genes in the significant modules were found to play important roles in aSAH. Biological function analysis suggested that protein biosynthesis-related processes and inflammatory responses-related processes were involved in the pathology of aSAH pathology. Combined with differentially expressed genes analysis and validation in 35 clinical samples, seven gene (CD27, ANXA3, ACSL1, PGLYRP1, ALPL, ARG1, and TPST1) were identified as potential biomarkers for aSAH, and three genes (ANXA3, ALPL, and ARG1) were changed with disease development, that may provide new insights into potential molecular mechanisms for aSAH.