Cargando…
FoldHSphere: deep hyperspherical embeddings for protein fold recognition
BACKGROUND: Current state-of-the-art deep learning approaches for protein fold recognition learn protein embeddings that improve prediction performance at the fold level. However, there still exists aperformance gap at the fold level and the (relatively easier) family level, suggesting that it might...
Autores principales: | Villegas-Morcillo, Amelia, Sanchez, Victoria, Gomez, Angel M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507389/ https://www.ncbi.nlm.nih.gov/pubmed/34641786 http://dx.doi.org/10.1186/s12859-021-04419-7 |
Ejemplares similares
-
ManyFold: an efficient and flexible library for training and validating protein folding models
por: Villegas-Morcillo, Amelia, et al.
Publicado: (2022) -
Minisum Hyperspheres
por: Korner, Mark-Christoph
Publicado: (2011) -
Deep generative model embedding of single-cell RNA-Seq profiles on hyperspheres and hyperbolic spaces
por: Ding, Jiarui, et al.
Publicado: (2021) -
Improving Protein Fold Recognition by Deep Learning Networks
por: Jo, Taeho, et al.
Publicado: (2015) -
DescFold: A web server for protein fold recognition
por: Yan, Ren-Xiang, et al.
Publicado: (2009)