Cargando…

Deepfake video detection: YOLO-Face convolution recurrent approach

Recently, the deepfake techniques for swapping faces have been spreading, allowing easy creation of hyper-realistic fake videos. Detecting the authenticity of a video has become increasingly critical because of the potential negative impact on the world. Here, a new project is introduced; You Only L...

Descripción completa

Detalles Bibliográficos
Autores principales: Ismail, Aya, Elpeltagy, Marwa, Zaki, Mervat, ElDahshan, Kamal A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507472/
https://www.ncbi.nlm.nih.gov/pubmed/34712799
http://dx.doi.org/10.7717/peerj-cs.730
Descripción
Sumario:Recently, the deepfake techniques for swapping faces have been spreading, allowing easy creation of hyper-realistic fake videos. Detecting the authenticity of a video has become increasingly critical because of the potential negative impact on the world. Here, a new project is introduced; You Only Look Once Convolution Recurrent Neural Networks (YOLO-CRNNs), to detect deepfake videos. The YOLO-Face detector detects face regions from each frame in the video, whereas a fine-tuned EfficientNet-B5 is used to extract the spatial features of these faces. These features are fed as a batch of input sequences into a Bidirectional Long Short-Term Memory (Bi-LSTM), to extract the temporal features. The new scheme is then evaluated on a new large-scale dataset; CelebDF-FaceForencics++ (c23), based on a combination of two popular datasets; FaceForencies++ (c23) and Celeb-DF. It achieves an Area Under the Receiver Operating Characteristic Curve (AUROC) 89.35% score, 89.38% accuracy, 83.15% recall, 85.55% precision, and 84.33% F1-measure for pasting data approach. The experimental analysis approves the superiority of the proposed method compared to the state-of-the-art methods.