Cargando…
A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso
BACKGROUND: The planning and control of wind power production rely heavily on short-term wind speed forecasting. Due to the non-linearity and non-stationarity of wind, it is difficult to carry out accurate modeling and prediction through traditional wind speed forecasting models. METHODS: In the pap...
Autor principal: | Wang, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507474/ https://www.ncbi.nlm.nih.gov/pubmed/34712801 http://dx.doi.org/10.7717/peerj-cs.732 |
Ejemplares similares
-
Empirical mode decomposition using deep learning model for financial market forecasting
por: Jin, Zebin, et al.
Publicado: (2022) -
A hybrid forecasting model using LSTM and Prophet for energy consumption with decomposition of time series data
por: Arslan, Serdar
Publicado: (2022) -
Forecasting Bitcoin closing price series using linear regression and neural networks models
por: Uras, Nicola, et al.
Publicado: (2020) -
A consumer emotion analysis system based on support vector regression model
por: Huo, Mingkui, et al.
Publicado: (2023) -
Multi-horizon short-term load forecasting using hybrid of LSTM and modified split convolution
por: Ullah, Irshad, et al.
Publicado: (2023)