Cargando…
Sentiment classification for employees reviews using regression vector- stochastic gradient descent classifier (RV-SGDC)
The satisfaction of employees is very important for any organization to make sufficient progress in production and to achieve its goals. Organizations try to keep their employees satisfied by making their policies according to employees’ demands which help to create a good environment for the collec...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507482/ https://www.ncbi.nlm.nih.gov/pubmed/34712795 http://dx.doi.org/10.7717/peerj-cs.712 |
Sumario: | The satisfaction of employees is very important for any organization to make sufficient progress in production and to achieve its goals. Organizations try to keep their employees satisfied by making their policies according to employees’ demands which help to create a good environment for the collective. For this reason, it is beneficial for organizations to perform staff satisfaction surveys to be analyzed, allowing them to gauge the levels of satisfaction among employees. Sentiment analysis is an approach that can assist in this regard as it categorizes sentiments of reviews into positive and negative results. In this study, we perform experiments for the world’s big six companies and classify their employees’ reviews based on their sentiments. For this, we proposed an approach using lexicon-based and machine learning based techniques. Firstly, we extracted the sentiments of employees from text reviews and labeled the dataset as positive and negative using TextBlob. Then we proposed a hybrid/voting model named Regression Vector-Stochastic Gradient Descent Classifier (RV-SGDC) for sentiment classification. RV-SGDC is a combination of logistic regression, support vector machines, and stochastic gradient descent. We combined these models under a majority voting criteria. We also used other machine learning models in the performance comparison of RV-SGDC. Further, three feature extraction techniques: term frequency-inverse document frequency (TF-IDF), bag of words, and global vectors are used to train learning models. We evaluated the performance of all models in terms of accuracy, precision, recall, and F1 score. The results revealed that RV-SGDC outperforms with a 0.97 accuracy score using the TF-IDF feature due to its hybrid architecture. |
---|