Cargando…

Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules

Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signal...

Descripción completa

Detalles Bibliográficos
Autores principales: Messerschmidt, Victoria L., Chintapula, Uday, Kuriakose, Aneetta E., Laboy, Samantha, Truong, Thuy Thi Dang, Kydd, LeNaiya A., Jaworski, Justyn, Pan, Zui, Sadek, Hesham, Nguyen, Kytai T., Lee, Juhyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507495/
https://www.ncbi.nlm.nih.gov/pubmed/34651022
http://dx.doi.org/10.3389/fcvm.2021.707897
_version_ 1784581869175570432
author Messerschmidt, Victoria L.
Chintapula, Uday
Kuriakose, Aneetta E.
Laboy, Samantha
Truong, Thuy Thi Dang
Kydd, LeNaiya A.
Jaworski, Justyn
Pan, Zui
Sadek, Hesham
Nguyen, Kytai T.
Lee, Juhyun
author_facet Messerschmidt, Victoria L.
Chintapula, Uday
Kuriakose, Aneetta E.
Laboy, Samantha
Truong, Thuy Thi Dang
Kydd, LeNaiya A.
Jaworski, Justyn
Pan, Zui
Sadek, Hesham
Nguyen, Kytai T.
Lee, Juhyun
author_sort Messerschmidt, Victoria L.
collection PubMed
description Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects.
format Online
Article
Text
id pubmed-8507495
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-85074952021-10-13 Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules Messerschmidt, Victoria L. Chintapula, Uday Kuriakose, Aneetta E. Laboy, Samantha Truong, Thuy Thi Dang Kydd, LeNaiya A. Jaworski, Justyn Pan, Zui Sadek, Hesham Nguyen, Kytai T. Lee, Juhyun Front Cardiovasc Med Cardiovascular Medicine Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects. Frontiers Media S.A. 2021-09-28 /pmc/articles/PMC8507495/ /pubmed/34651022 http://dx.doi.org/10.3389/fcvm.2021.707897 Text en Copyright © 2021 Messerschmidt, Chintapula, Kuriakose, Laboy, Truong, Kydd, Jaworski, Pan, Sadek, Nguyen and Lee. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cardiovascular Medicine
Messerschmidt, Victoria L.
Chintapula, Uday
Kuriakose, Aneetta E.
Laboy, Samantha
Truong, Thuy Thi Dang
Kydd, LeNaiya A.
Jaworski, Justyn
Pan, Zui
Sadek, Hesham
Nguyen, Kytai T.
Lee, Juhyun
Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules
title Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules
title_full Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules
title_fullStr Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules
title_full_unstemmed Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules
title_short Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules
title_sort notch intracellular domain plasmid delivery via poly(lactic-co-glycolic acid) nanoparticles to upregulate notch pathway molecules
topic Cardiovascular Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507495/
https://www.ncbi.nlm.nih.gov/pubmed/34651022
http://dx.doi.org/10.3389/fcvm.2021.707897
work_keys_str_mv AT messerschmidtvictorial notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT chintapulauday notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT kuriakoseaneettae notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT laboysamantha notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT truongthuythidang notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT kyddlenaiyaa notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT jaworskijustyn notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT panzui notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT sadekhesham notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT nguyenkytait notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules
AT leejuhyun notchintracellulardomainplasmiddeliveryviapolylacticcoglycolicacidnanoparticlestoupregulatenotchpathwaymolecules