Cargando…
Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification
SIMPLE SUMMARY: We demonstrate an automated Raman cytology system designed for high-throughput and reproducibility. The system uses a Raman spectroscopy system integrated into a conventional microscope, all controlled electronically via and open source software, Micro-Manager. The system can automat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507544/ https://www.ncbi.nlm.nih.gov/pubmed/34638253 http://dx.doi.org/10.3390/cancers13194767 |
Sumario: | SIMPLE SUMMARY: We demonstrate an automated Raman cytology system designed for high-throughput and reproducibility. The system uses a Raman spectroscopy system integrated into a conventional microscope, all controlled electronically via and open source software, Micro-Manager. The system can automatically identify and probe epithelial cell nuclei for Raman spectroscopy. 6426 HT1197 (high-grade bladder cancer) cell spectra, and 7499 RT112 (low-grade bladdercancer) cell spectra were recorded. The data was subsequently culled and processed for denoising and artifact removal. We demonstrate, using multivariate statistical analysis, that the cells can be distinguished, using a variety of approaches with accuracy, sensitivity and specificity in excess of 95%. ABSTRACT: Raman micro-spectroscopy is a powerful technique for the identification and classification of cancer cells and tissues. In recent years, the application of Raman spectroscopy to detect bladder, cervical, and oral cytological samples has been reported to have an accuracy greater than that of standard pathology. However, despite being entirely non-invasive and relatively inexpensive, the slow recording time, and lack of reproducibility have prevented the clinical adoption of the technology. Here, we present an automated Raman cytology system that can facilitate high-throughput screening and improve reproducibility. The proposed system is designed to be integrated directly into the standard pathology clinic, taking into account their methodologies and consumables. The system employs image processing algorithms and integrated hardware/software architectures in order to achieve automation and is tested using the ThinPrep standard, including the use of glass slides, and a number of bladder cancer cell lines. The entire automation process is implemented, using the open source Micro-Manager platform and is made freely available. We believe that this code can be readily integrated into existing commercial Raman micro-spectrometers. |
---|