Cargando…
Overcoming Immunotherapy Resistance by Targeting the Tumor-Intrinsic NLRP3-HSP70 Signaling Axis
SIMPLE SUMMARY: The tumor-intrinsic NLRP3 inflammasome is a newly recognized player in the regulation of tumor-directed immune responses and promises to provide fresh insight into how tumors respond to immunotherapy. This brief review discusses recent data describing how activation of the tumor-intr...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507548/ https://www.ncbi.nlm.nih.gov/pubmed/34638239 http://dx.doi.org/10.3390/cancers13194753 |
Sumario: | SIMPLE SUMMARY: The tumor-intrinsic NLRP3 inflammasome is a newly recognized player in the regulation of tumor-directed immune responses and promises to provide fresh insight into how tumors respond to immunotherapy. This brief review discusses recent data describing how activation of the tumor-intrinsic NLRP3 inflammasome contributes to immune evasion and what this pathway may provide to the field of immuno-oncology both in terms of pharmacologic targets capable of boosting responses to checkpoint inhibitor therapies and predictive biomarkers indicating which tumors may be most susceptible to these new therapeutic strategies. ABSTRACT: The tumor-intrinsic NOD-like receptor family, pyrin-domain-containing-3 (NLRP3) inflammasome, plays an important role in regulating immunosuppressive myeloid cell populations in the tumor microenvironment (TME). While prior studies have described the activation of this inflammasome in driving pro-tumorigenic mechanisms, emerging data is now revealing the tumor NLRP3 inflammasome and the downstream release of heat shock protein-70 (HSP70) to regulate anti-tumor immunity and contribute to the development of adaptive resistance to anti-PD-1 immunotherapy. Genetic alterations that influence the activity of the NLRP3 signaling axis are likely to impact T cell-mediated tumor cell killing and may indicate which tumors rely on this pathway for immune escape. These studies suggest that the NLRP3 inflammasome and its secreted product, HSP70, represent promising pharmacologic targets for manipulating innate immune cell populations in the TME while enhancing responses to anti-PD-1 immunotherapy. Additional studies are needed to better understand tumor-specific regulatory mechanisms of NLRP3 to enable the development of tumor-selective pharmacologic strategies capable of augmenting responses to checkpoint inhibitor immunotherapy while minimizing unwanted off-target effects. The execution of upcoming clinical trials investigating this strategy to overcome anti-PD-1 resistance promises to provide novel insight into the role of this pathway in immuno-oncology. |
---|