Cargando…
An evolvable adversarial network with gradient penalty for COVID-19 infection segmentation
COVID-19 infection segmentation has essential applications in determining the severity of a COVID-19 patient and can provide a necessary basis for doctors to adopt a treatment scheme. However, in clinical applications, infection segmentation is performed by human beings, which is time-consuming and...
Autores principales: | He, Juanjuan, Zhu, Qi, Zhang, Kai, Yu, Piaoyao, Tang, Jinshan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507576/ https://www.ncbi.nlm.nih.gov/pubmed/34658687 http://dx.doi.org/10.1016/j.asoc.2021.107947 |
Ejemplares similares
-
Data augmentation-based conditional Wasserstein generative adversarial network-gradient penalty for XSS attack detection system
por: Mokbal, Fawaz Mahiuob Mohammed, et al.
Publicado: (2020) -
Generative adversarial networks based skin lesion segmentation
por: Innani, Shubham, et al.
Publicado: (2023) -
A transformer-based generative adversarial network for brain tumor segmentation
por: Huang, Liqun, et al.
Publicado: (2022) -
Progressive global perception and local polishing network for lung infection segmentation of COVID-19 CT images
por: Mu, Nan, et al.
Publicado: (2021) -
Visualization of Genomic Changes by Segmented Smoothing Using an L
(0) Penalty
por: Rippe, Ralph C. A., et al.
Publicado: (2012)