Cargando…
Forecasting the Suitability of Online Mental Health Information for Effective Self-Care Developing Machine Learning Classifiers Using Natural Language Features
Background: Online mental health information represents important resources for people living with mental health issues. Suitability of mental health information for effective self-care remains understudied, despite the increasing needs for more actionable mental health resources, especially among y...
Autores principales: | Ji, Meng, Xie, Wenxiu, Huang, Riliu, Qian, Xiaobo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507671/ https://www.ncbi.nlm.nih.gov/pubmed/34639348 http://dx.doi.org/10.3390/ijerph181910048 |
Ejemplares similares
-
Forecasting Erroneous Neural Machine Translation of Disease Symptoms: Development of Bayesian Probabilistic Classifiers for Cross-Lingual Health Translation
por: Ji, Meng, et al.
Publicado: (2021) -
Automatic Diagnosis of Mental Healthcare Information Actionability: Developing Binary Classifiers
por: Ji, Meng, et al.
Publicado: (2021) -
Predicting Risks of Machine Translations of Public Health Resources by Developing Interpretable Machine Learning Classifiers
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Assessing Communicative Effectiveness of Public Health Information in Chinese: Developing Automatic Decision Aids for International Health Professionals
por: Ji, Meng, et al.
Publicado: (2021) -
Detecting Symptom Errors in Neural Machine Translation of Patient Health Information on Depressive Disorders: Developing Interpretable Bayesian Machine Learning Classifiers
por: Xie, Wenxiu, et al.
Publicado: (2021)