Cargando…

A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model

SIMPLE SUMMARY: This study aims at using a multi-technique approach to detect and analyze the effects of high dose rate spatially fractionated radiation therapies and to compare them to seamless broad beam irradiation targeting healthy and glioblastoma-bearing rat brains and delivering three differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Romano, Mariele, Bravin, Alberto, Mittone, Alberto, Eckhardt, Alicia, Barbone, Giacomo E., Sancey, Lucie, Dinkel, Julien, Bartzsch, Stefan, Ricke, Jens, Alunni-Fabbroni, Marianna, Hirner-Eppeneder, Heidrun, Karpov, Dmitry, Giannini, Cinzia, Bunk, Oliver, Bouchet, Audrey, Ruf, Viktoria, Giese, Armin, Coan, Paola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507698/
https://www.ncbi.nlm.nih.gov/pubmed/34638437
http://dx.doi.org/10.3390/cancers13194953
_version_ 1784581915194425344
author Romano, Mariele
Bravin, Alberto
Mittone, Alberto
Eckhardt, Alicia
Barbone, Giacomo E.
Sancey, Lucie
Dinkel, Julien
Bartzsch, Stefan
Ricke, Jens
Alunni-Fabbroni, Marianna
Hirner-Eppeneder, Heidrun
Karpov, Dmitry
Giannini, Cinzia
Bunk, Oliver
Bouchet, Audrey
Ruf, Viktoria
Giese, Armin
Coan, Paola
author_facet Romano, Mariele
Bravin, Alberto
Mittone, Alberto
Eckhardt, Alicia
Barbone, Giacomo E.
Sancey, Lucie
Dinkel, Julien
Bartzsch, Stefan
Ricke, Jens
Alunni-Fabbroni, Marianna
Hirner-Eppeneder, Heidrun
Karpov, Dmitry
Giannini, Cinzia
Bunk, Oliver
Bouchet, Audrey
Ruf, Viktoria
Giese, Armin
Coan, Paola
author_sort Romano, Mariele
collection PubMed
description SIMPLE SUMMARY: This study aims at using a multi-technique approach to detect and analyze the effects of high dose rate spatially fractionated radiation therapies and to compare them to seamless broad beam irradiation targeting healthy and glioblastoma-bearing rat brains and delivering three different doses per each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray phase contrast imaging–computed tomography, histology, immunohistochemistry, X-ray fluorescence, and small- and wide-angle X-ray scattering to achieve detailed visualization, characterization and classification in 3D of the radio-induced effects on brain tissues. The original results bring new insights to the understanding of the response of cerebral tissue and tumors treated with high dose rate spatially fractioned radiotherapies and put the basis for channeling studies of in-vivo applications for monitoring RT effects. ABSTRACT: The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging–Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS). XPCI-CT discriminates with high sensitivity the effects of MRT, MB and BB irradiations on both healthy and GBM-bearing brains producing a first-time 3D visualization and morphological analysis of the radio-induced lesions, MRT and MB induced tissue ablations, the presence of hyperdense deposits within specific areas of the brain and tumor evolution or regression with respect to the evaluation made few days post-irradiation with an in-vivo magnetic resonance imaging session. Histology, immunohistochemistry, SAXS/WAXS and XRF allowed identification and classification of these deposits as hydroxyapatite crystals with the coexistence of Ca, P and Fe mineralization, and the multi-technique approach enabled the realization, for the first time, of the map of the differential radiosensitivity of the different brain areas treated with MRT and MB. 3D XPCI-CT datasets enabled also the quantification of tumor volumes and Ca/Fe deposits and their full-organ visualization. The multi-scale and multi-technique approach enabled a detailed visualization and classification in 3D of the radio-induced effects on brain tissues bringing new essential information towards the clinical implementation of the MRT and MB radiation therapy techniques.
format Online
Article
Text
id pubmed-8507698
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85076982021-10-13 A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model Romano, Mariele Bravin, Alberto Mittone, Alberto Eckhardt, Alicia Barbone, Giacomo E. Sancey, Lucie Dinkel, Julien Bartzsch, Stefan Ricke, Jens Alunni-Fabbroni, Marianna Hirner-Eppeneder, Heidrun Karpov, Dmitry Giannini, Cinzia Bunk, Oliver Bouchet, Audrey Ruf, Viktoria Giese, Armin Coan, Paola Cancers (Basel) Article SIMPLE SUMMARY: This study aims at using a multi-technique approach to detect and analyze the effects of high dose rate spatially fractionated radiation therapies and to compare them to seamless broad beam irradiation targeting healthy and glioblastoma-bearing rat brains and delivering three different doses per each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray phase contrast imaging–computed tomography, histology, immunohistochemistry, X-ray fluorescence, and small- and wide-angle X-ray scattering to achieve detailed visualization, characterization and classification in 3D of the radio-induced effects on brain tissues. The original results bring new insights to the understanding of the response of cerebral tissue and tumors treated with high dose rate spatially fractioned radiotherapies and put the basis for channeling studies of in-vivo applications for monitoring RT effects. ABSTRACT: The purpose of this study is to use a multi-technique approach to detect the effects of spatially fractionated X-ray Microbeam (MRT) and Minibeam Radiation Therapy (MB) and to compare them to seamless Broad Beam (BB) irradiation. Healthy- and Glioblastoma (GBM)-bearing male Fischer rats were irradiated in-vivo on the right brain hemisphere with MRT, MB and BB delivering three different doses for each irradiation geometry. Brains were analyzed post mortem by multi-scale X-ray Phase Contrast Imaging–Computed Tomography (XPCI-CT), histology, immunohistochemistry, X-ray Fluorescence (XRF), Small- and Wide-Angle X-ray Scattering (SAXS/WAXS). XPCI-CT discriminates with high sensitivity the effects of MRT, MB and BB irradiations on both healthy and GBM-bearing brains producing a first-time 3D visualization and morphological analysis of the radio-induced lesions, MRT and MB induced tissue ablations, the presence of hyperdense deposits within specific areas of the brain and tumor evolution or regression with respect to the evaluation made few days post-irradiation with an in-vivo magnetic resonance imaging session. Histology, immunohistochemistry, SAXS/WAXS and XRF allowed identification and classification of these deposits as hydroxyapatite crystals with the coexistence of Ca, P and Fe mineralization, and the multi-technique approach enabled the realization, for the first time, of the map of the differential radiosensitivity of the different brain areas treated with MRT and MB. 3D XPCI-CT datasets enabled also the quantification of tumor volumes and Ca/Fe deposits and their full-organ visualization. The multi-scale and multi-technique approach enabled a detailed visualization and classification in 3D of the radio-induced effects on brain tissues bringing new essential information towards the clinical implementation of the MRT and MB radiation therapy techniques. MDPI 2021-10-01 /pmc/articles/PMC8507698/ /pubmed/34638437 http://dx.doi.org/10.3390/cancers13194953 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Romano, Mariele
Bravin, Alberto
Mittone, Alberto
Eckhardt, Alicia
Barbone, Giacomo E.
Sancey, Lucie
Dinkel, Julien
Bartzsch, Stefan
Ricke, Jens
Alunni-Fabbroni, Marianna
Hirner-Eppeneder, Heidrun
Karpov, Dmitry
Giannini, Cinzia
Bunk, Oliver
Bouchet, Audrey
Ruf, Viktoria
Giese, Armin
Coan, Paola
A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model
title A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model
title_full A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model
title_fullStr A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model
title_full_unstemmed A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model
title_short A Multi-Scale and Multi-Technique Approach for the Characterization of the Effects of Spatially Fractionated X-ray Radiation Therapies in a Preclinical Model
title_sort multi-scale and multi-technique approach for the characterization of the effects of spatially fractionated x-ray radiation therapies in a preclinical model
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507698/
https://www.ncbi.nlm.nih.gov/pubmed/34638437
http://dx.doi.org/10.3390/cancers13194953
work_keys_str_mv AT romanomariele amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bravinalberto amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT mittonealberto amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT eckhardtalicia amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT barbonegiacomoe amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT sanceylucie amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT dinkeljulien amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bartzschstefan amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT rickejens amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT alunnifabbronimarianna amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT hirnereppenederheidrun amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT karpovdmitry amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT gianninicinzia amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bunkoliver amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bouchetaudrey amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT rufviktoria amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT giesearmin amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT coanpaola amultiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT romanomariele multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bravinalberto multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT mittonealberto multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT eckhardtalicia multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT barbonegiacomoe multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT sanceylucie multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT dinkeljulien multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bartzschstefan multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT rickejens multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT alunnifabbronimarianna multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT hirnereppenederheidrun multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT karpovdmitry multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT gianninicinzia multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bunkoliver multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT bouchetaudrey multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT rufviktoria multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT giesearmin multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel
AT coanpaola multiscaleandmultitechniqueapproachforthecharacterizationoftheeffectsofspatiallyfractionatedxrayradiationtherapiesinapreclinicalmodel