Cargando…
Morphological Features Extracted by AI Associated with Spatial Transcriptomics in Prostate Cancer
SIMPLE SUMMARY: Prostate cancer has very varied appearances when examined under the microscope, and it is difficult to distinguish clinically significant cancer from indolent disease. In this study, we use computer analyses inspired by neurons, so-called ‘neural networks’, to gain new insights into...
Autores principales: | Chelebian, Eduard, Avenel, Christophe, Kartasalo, Kimmo, Marklund, Maja, Tanoglidi, Anna, Mirtti, Tuomas, Colling, Richard, Erickson, Andrew, Lamb, Alastair D., Lundeberg, Joakim, Wählby, Carolina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507756/ https://www.ncbi.nlm.nih.gov/pubmed/34638322 http://dx.doi.org/10.3390/cancers13194837 |
Ejemplares similares
-
TissUUmaps 3: Improvements in interactive visualization, exploration, and quality assessment of large-scale spatial omics data
por: Pielawski, Nicolas, et al.
Publicado: (2023) -
Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones
por: Marklund, Maja, et al.
Publicado: (2022) -
Spatially resolved clonal copy number alterations in benign and malignant tissue
por: Erickson, Andrew, et al.
Publicado: (2022) -
Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity
por: Berglund, Emelie, et al.
Publicado: (2018) -
AI Model for Prostate Biopsies Predicts Cancer Survival
por: Sandeman, Kevin, et al.
Publicado: (2022)