Cargando…
BiLSTM-I: A Deep Learning-Based Long Interval Gap-Filling Method for Meteorological Observation Data
Complete and high-resolution temperature observation data are important input parameters for agrometeorological disaster monitoring and ecosystem modelling. Due to the limitation of field meteorological observation conditions, observation data are commonly missing, and an appropriate data imputation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8507855/ https://www.ncbi.nlm.nih.gov/pubmed/34639622 http://dx.doi.org/10.3390/ijerph181910321 |