Cargando…
Multi-Stage Harmonization for Robust AI across Breast MR Databases
SIMPLE SUMMARY: Batch harmonization of radiomic features extracted from magnetic resonance images of breast lesions from two databases was applied to an artificial intelligence/machine learning classification workflow. Training and independent test sets from the two databases, as well as the combina...
Autores principales: | Whitney, Heather M., Li, Hui, Ji, Yu, Liu, Peifang, Giger, Maryellen L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508003/ https://www.ncbi.nlm.nih.gov/pubmed/34638294 http://dx.doi.org/10.3390/cancers13194809 |
Ejemplares similares
-
A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI
por: Hu, Qiyuan, et al.
Publicado: (2020) -
Independent validation of machine learning in diagnosing breast Cancer on magnetic resonance imaging within a single institution
por: Ji, Yu, et al.
Publicado: (2019) -
Performance metric curve analysis framework to assess impact of the decision variable threshold, disease prevalence, and dataset variability in two-class classification
por: Whitney, Heather M., et al.
Publicado: (2022) -
Lessons learned in transitioning to AI in the medical imaging of COVID-19
por: El Naqa, Issam, et al.
Publicado: (2021) -
Integrating structured abstracts in the Journal of Medical Imaging
por: Giger, Maryellen
Publicado: (2020)