Cargando…

Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms

SIMPLE SUMMARY: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome, particularly for the intermediate domains of adenocarcinomas and large-cell neuroendocrine carcinomas. Moreover, subjectivity and...

Descripción completa

Detalles Bibliográficos
Autores principales: Bulloni, Matteo, Sandrini, Giada, Stacchiotti, Irene, Barberis, Massimo, Calabrese, Fiorella, Carvalho, Lina, Fontanini, Gabriella, Alì, Greta, Fortarezza, Francesco, Hofman, Paul, Hofman, Veronique, Kern, Izidor, Maiorano, Eugenio, Maragliano, Roberta, Marchiori, Deborah, Metovic, Jasna, Papotti, Mauro, Pezzuto, Federica, Pisa, Eleonora, Remmelink, Myriam, Serio, Gabriella, Marzullo, Andrea, Trabucco, Senia Maria Rosaria, Pennella, Antonio, De Palma, Angela, Marulli, Giuseppe, Fassina, Ambrogio, Maffeis, Valeria, Nesi, Gabriella, Naheed, Salma, Rea, Federico, Ottensmeier, Christian H., Sessa, Fausto, Uccella, Silvia, Pelosi, Giuseppe, Pattini, Linda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508355/
https://www.ncbi.nlm.nih.gov/pubmed/34638359
http://dx.doi.org/10.3390/cancers13194875
_version_ 1784582077194174464
author Bulloni, Matteo
Sandrini, Giada
Stacchiotti, Irene
Barberis, Massimo
Calabrese, Fiorella
Carvalho, Lina
Fontanini, Gabriella
Alì, Greta
Fortarezza, Francesco
Hofman, Paul
Hofman, Veronique
Kern, Izidor
Maiorano, Eugenio
Maragliano, Roberta
Marchiori, Deborah
Metovic, Jasna
Papotti, Mauro
Pezzuto, Federica
Pisa, Eleonora
Remmelink, Myriam
Serio, Gabriella
Marzullo, Andrea
Trabucco, Senia Maria Rosaria
Pennella, Antonio
De Palma, Angela
Marulli, Giuseppe
Fassina, Ambrogio
Maffeis, Valeria
Nesi, Gabriella
Naheed, Salma
Rea, Federico
Ottensmeier, Christian H.
Sessa, Fausto
Uccella, Silvia
Pelosi, Giuseppe
Pattini, Linda
author_facet Bulloni, Matteo
Sandrini, Giada
Stacchiotti, Irene
Barberis, Massimo
Calabrese, Fiorella
Carvalho, Lina
Fontanini, Gabriella
Alì, Greta
Fortarezza, Francesco
Hofman, Paul
Hofman, Veronique
Kern, Izidor
Maiorano, Eugenio
Maragliano, Roberta
Marchiori, Deborah
Metovic, Jasna
Papotti, Mauro
Pezzuto, Federica
Pisa, Eleonora
Remmelink, Myriam
Serio, Gabriella
Marzullo, Andrea
Trabucco, Senia Maria Rosaria
Pennella, Antonio
De Palma, Angela
Marulli, Giuseppe
Fassina, Ambrogio
Maffeis, Valeria
Nesi, Gabriella
Naheed, Salma
Rea, Federico
Ottensmeier, Christian H.
Sessa, Fausto
Uccella, Silvia
Pelosi, Giuseppe
Pattini, Linda
author_sort Bulloni, Matteo
collection PubMed
description SIMPLE SUMMARY: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome, particularly for the intermediate domains of adenocarcinomas and large-cell neuroendocrine carcinomas. Moreover, subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. The aim of this study was to design and evaluate an objective and reproducible approach to the grading of lung NENs, potentially extendable to other NENs, by exploring a completely new perspective of interpreting the well-recognised proliferation marker Ki-67. We designed an automated pipeline to harvest quantitative information from the spatial distribution of Ki-67-positive cells, analysing its heterogeneity in the entire extent of tumour tissue—which currently represents the main weakness of Ki-67—and employed machine learning techniques to predict prognosis based on this information. Demonstrating the efficacy of the proposed framework would hint at a possible path for the future of grading and classification of NENs. ABSTRACT: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs.
format Online
Article
Text
id pubmed-8508355
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85083552021-10-13 Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms Bulloni, Matteo Sandrini, Giada Stacchiotti, Irene Barberis, Massimo Calabrese, Fiorella Carvalho, Lina Fontanini, Gabriella Alì, Greta Fortarezza, Francesco Hofman, Paul Hofman, Veronique Kern, Izidor Maiorano, Eugenio Maragliano, Roberta Marchiori, Deborah Metovic, Jasna Papotti, Mauro Pezzuto, Federica Pisa, Eleonora Remmelink, Myriam Serio, Gabriella Marzullo, Andrea Trabucco, Senia Maria Rosaria Pennella, Antonio De Palma, Angela Marulli, Giuseppe Fassina, Ambrogio Maffeis, Valeria Nesi, Gabriella Naheed, Salma Rea, Federico Ottensmeier, Christian H. Sessa, Fausto Uccella, Silvia Pelosi, Giuseppe Pattini, Linda Cancers (Basel) Article SIMPLE SUMMARY: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome, particularly for the intermediate domains of adenocarcinomas and large-cell neuroendocrine carcinomas. Moreover, subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. The aim of this study was to design and evaluate an objective and reproducible approach to the grading of lung NENs, potentially extendable to other NENs, by exploring a completely new perspective of interpreting the well-recognised proliferation marker Ki-67. We designed an automated pipeline to harvest quantitative information from the spatial distribution of Ki-67-positive cells, analysing its heterogeneity in the entire extent of tumour tissue—which currently represents the main weakness of Ki-67—and employed machine learning techniques to predict prognosis based on this information. Demonstrating the efficacy of the proposed framework would hint at a possible path for the future of grading and classification of NENs. ABSTRACT: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs. MDPI 2021-09-29 /pmc/articles/PMC8508355/ /pubmed/34638359 http://dx.doi.org/10.3390/cancers13194875 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bulloni, Matteo
Sandrini, Giada
Stacchiotti, Irene
Barberis, Massimo
Calabrese, Fiorella
Carvalho, Lina
Fontanini, Gabriella
Alì, Greta
Fortarezza, Francesco
Hofman, Paul
Hofman, Veronique
Kern, Izidor
Maiorano, Eugenio
Maragliano, Roberta
Marchiori, Deborah
Metovic, Jasna
Papotti, Mauro
Pezzuto, Federica
Pisa, Eleonora
Remmelink, Myriam
Serio, Gabriella
Marzullo, Andrea
Trabucco, Senia Maria Rosaria
Pennella, Antonio
De Palma, Angela
Marulli, Giuseppe
Fassina, Ambrogio
Maffeis, Valeria
Nesi, Gabriella
Naheed, Salma
Rea, Federico
Ottensmeier, Christian H.
Sessa, Fausto
Uccella, Silvia
Pelosi, Giuseppe
Pattini, Linda
Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms
title Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms
title_full Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms
title_fullStr Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms
title_full_unstemmed Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms
title_short Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms
title_sort automated analysis of proliferating cells spatial organisation predicts prognosis in lung neuroendocrine neoplasms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508355/
https://www.ncbi.nlm.nih.gov/pubmed/34638359
http://dx.doi.org/10.3390/cancers13194875
work_keys_str_mv AT bullonimatteo automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT sandrinigiada automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT stacchiottiirene automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT barberismassimo automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT calabresefiorella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT carvalholina automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT fontaninigabriella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT aligreta automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT fortarezzafrancesco automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT hofmanpaul automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT hofmanveronique automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT kernizidor automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT maioranoeugenio automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT maraglianoroberta automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT marchiorideborah automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT metovicjasna automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT papottimauro automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT pezzutofederica automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT pisaeleonora automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT remmelinkmyriam automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT seriogabriella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT marzulloandrea automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT trabuccoseniamariarosaria automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT pennellaantonio automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT depalmaangela automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT marulligiuseppe automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT fassinaambrogio automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT maffeisvaleria automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT nesigabriella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT naheedsalma automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT reafederico automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT ottensmeierchristianh automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT sessafausto automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT uccellasilvia automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT pelosigiuseppe automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms
AT pattinilinda automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms