Cargando…
Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms
SIMPLE SUMMARY: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome, particularly for the intermediate domains of adenocarcinomas and large-cell neuroendocrine carcinomas. Moreover, subjectivity and...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508355/ https://www.ncbi.nlm.nih.gov/pubmed/34638359 http://dx.doi.org/10.3390/cancers13194875 |
_version_ | 1784582077194174464 |
---|---|
author | Bulloni, Matteo Sandrini, Giada Stacchiotti, Irene Barberis, Massimo Calabrese, Fiorella Carvalho, Lina Fontanini, Gabriella Alì, Greta Fortarezza, Francesco Hofman, Paul Hofman, Veronique Kern, Izidor Maiorano, Eugenio Maragliano, Roberta Marchiori, Deborah Metovic, Jasna Papotti, Mauro Pezzuto, Federica Pisa, Eleonora Remmelink, Myriam Serio, Gabriella Marzullo, Andrea Trabucco, Senia Maria Rosaria Pennella, Antonio De Palma, Angela Marulli, Giuseppe Fassina, Ambrogio Maffeis, Valeria Nesi, Gabriella Naheed, Salma Rea, Federico Ottensmeier, Christian H. Sessa, Fausto Uccella, Silvia Pelosi, Giuseppe Pattini, Linda |
author_facet | Bulloni, Matteo Sandrini, Giada Stacchiotti, Irene Barberis, Massimo Calabrese, Fiorella Carvalho, Lina Fontanini, Gabriella Alì, Greta Fortarezza, Francesco Hofman, Paul Hofman, Veronique Kern, Izidor Maiorano, Eugenio Maragliano, Roberta Marchiori, Deborah Metovic, Jasna Papotti, Mauro Pezzuto, Federica Pisa, Eleonora Remmelink, Myriam Serio, Gabriella Marzullo, Andrea Trabucco, Senia Maria Rosaria Pennella, Antonio De Palma, Angela Marulli, Giuseppe Fassina, Ambrogio Maffeis, Valeria Nesi, Gabriella Naheed, Salma Rea, Federico Ottensmeier, Christian H. Sessa, Fausto Uccella, Silvia Pelosi, Giuseppe Pattini, Linda |
author_sort | Bulloni, Matteo |
collection | PubMed |
description | SIMPLE SUMMARY: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome, particularly for the intermediate domains of adenocarcinomas and large-cell neuroendocrine carcinomas. Moreover, subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. The aim of this study was to design and evaluate an objective and reproducible approach to the grading of lung NENs, potentially extendable to other NENs, by exploring a completely new perspective of interpreting the well-recognised proliferation marker Ki-67. We designed an automated pipeline to harvest quantitative information from the spatial distribution of Ki-67-positive cells, analysing its heterogeneity in the entire extent of tumour tissue—which currently represents the main weakness of Ki-67—and employed machine learning techniques to predict prognosis based on this information. Demonstrating the efficacy of the proposed framework would hint at a possible path for the future of grading and classification of NENs. ABSTRACT: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs. |
format | Online Article Text |
id | pubmed-8508355 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85083552021-10-13 Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms Bulloni, Matteo Sandrini, Giada Stacchiotti, Irene Barberis, Massimo Calabrese, Fiorella Carvalho, Lina Fontanini, Gabriella Alì, Greta Fortarezza, Francesco Hofman, Paul Hofman, Veronique Kern, Izidor Maiorano, Eugenio Maragliano, Roberta Marchiori, Deborah Metovic, Jasna Papotti, Mauro Pezzuto, Federica Pisa, Eleonora Remmelink, Myriam Serio, Gabriella Marzullo, Andrea Trabucco, Senia Maria Rosaria Pennella, Antonio De Palma, Angela Marulli, Giuseppe Fassina, Ambrogio Maffeis, Valeria Nesi, Gabriella Naheed, Salma Rea, Federico Ottensmeier, Christian H. Sessa, Fausto Uccella, Silvia Pelosi, Giuseppe Pattini, Linda Cancers (Basel) Article SIMPLE SUMMARY: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome, particularly for the intermediate domains of adenocarcinomas and large-cell neuroendocrine carcinomas. Moreover, subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. The aim of this study was to design and evaluate an objective and reproducible approach to the grading of lung NENs, potentially extendable to other NENs, by exploring a completely new perspective of interpreting the well-recognised proliferation marker Ki-67. We designed an automated pipeline to harvest quantitative information from the spatial distribution of Ki-67-positive cells, analysing its heterogeneity in the entire extent of tumour tissue—which currently represents the main weakness of Ki-67—and employed machine learning techniques to predict prognosis based on this information. Demonstrating the efficacy of the proposed framework would hint at a possible path for the future of grading and classification of NENs. ABSTRACT: Lung neuroendocrine neoplasms (lung NENs) are categorised by morphology, defining a classification sometimes unable to reflect ultimate clinical outcome. Subjectivity and poor reproducibility characterise diagnosis and prognosis assessment of all NENs. Here, we propose a machine learning framework for tumour prognosis assessment based on a quantitative, automated and repeatable evaluation of the spatial distribution of cells immunohistochemically positive for the proliferation marker Ki-67, performed on the entire extent of high-resolution whole slide images. Combining features from the fields of graph theory, fractality analysis, stochastic geometry and information theory, we describe the topology of replicating cells and predict prognosis in a histology-independent way. We demonstrate how our approach outperforms the well-recognised prognostic role of Ki-67 Labelling Index on a multi-centre dataset comprising the most controversial lung NENs. Moreover, we show that our system identifies arrangement patterns in the cells positive for Ki-67 that appear independently of tumour subtyping. Strikingly, the subset of these features whose presence is also independent of the value of the Labelling Index and the density of Ki-67-positive cells prove to be especially relevant in discerning prognostic classes. These findings disclose a possible path for the future of grading and classification of NENs. MDPI 2021-09-29 /pmc/articles/PMC8508355/ /pubmed/34638359 http://dx.doi.org/10.3390/cancers13194875 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bulloni, Matteo Sandrini, Giada Stacchiotti, Irene Barberis, Massimo Calabrese, Fiorella Carvalho, Lina Fontanini, Gabriella Alì, Greta Fortarezza, Francesco Hofman, Paul Hofman, Veronique Kern, Izidor Maiorano, Eugenio Maragliano, Roberta Marchiori, Deborah Metovic, Jasna Papotti, Mauro Pezzuto, Federica Pisa, Eleonora Remmelink, Myriam Serio, Gabriella Marzullo, Andrea Trabucco, Senia Maria Rosaria Pennella, Antonio De Palma, Angela Marulli, Giuseppe Fassina, Ambrogio Maffeis, Valeria Nesi, Gabriella Naheed, Salma Rea, Federico Ottensmeier, Christian H. Sessa, Fausto Uccella, Silvia Pelosi, Giuseppe Pattini, Linda Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms |
title | Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms |
title_full | Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms |
title_fullStr | Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms |
title_full_unstemmed | Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms |
title_short | Automated Analysis of Proliferating Cells Spatial Organisation Predicts Prognosis in Lung Neuroendocrine Neoplasms |
title_sort | automated analysis of proliferating cells spatial organisation predicts prognosis in lung neuroendocrine neoplasms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508355/ https://www.ncbi.nlm.nih.gov/pubmed/34638359 http://dx.doi.org/10.3390/cancers13194875 |
work_keys_str_mv | AT bullonimatteo automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT sandrinigiada automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT stacchiottiirene automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT barberismassimo automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT calabresefiorella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT carvalholina automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT fontaninigabriella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT aligreta automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT fortarezzafrancesco automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT hofmanpaul automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT hofmanveronique automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT kernizidor automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT maioranoeugenio automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT maraglianoroberta automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT marchiorideborah automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT metovicjasna automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT papottimauro automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT pezzutofederica automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT pisaeleonora automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT remmelinkmyriam automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT seriogabriella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT marzulloandrea automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT trabuccoseniamariarosaria automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT pennellaantonio automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT depalmaangela automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT marulligiuseppe automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT fassinaambrogio automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT maffeisvaleria automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT nesigabriella automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT naheedsalma automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT reafederico automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT ottensmeierchristianh automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT sessafausto automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT uccellasilvia automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT pelosigiuseppe automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms AT pattinilinda automatedanalysisofproliferatingcellsspatialorganisationpredictsprognosisinlungneuroendocrineneoplasms |