Cargando…
Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland)
The aim of the presented article was to determine whether human activity significantly influenced the enrichment of Cd, Co, and Cr, in river sediments and Glyceria maxima, in the basin of the Pisa River, an underdeveloped area in Poland. In this study, the content and spatial distribution of Cd, Cr,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508360/ https://www.ncbi.nlm.nih.gov/pubmed/34639492 http://dx.doi.org/10.3390/ijerph181910193 |
Sumario: | The aim of the presented article was to determine whether human activity significantly influenced the enrichment of Cd, Co, and Cr, in river sediments and Glyceria maxima, in the basin of the Pisa River, an underdeveloped area in Poland. In this study, the content and spatial distribution of Cd, Cr, and Co in the organs underground and above ground, (sequentially: root, stem, leaf) of Glyceria maxima and bottom sediments of the Pisa River and its tributaries (Pisza Woda, Wincenta, Turośl and Skroda River) were analyzed. The Potentially toxic elements (PTEs) were determined by ASA method (Atomic Absorption Spectrometry). The results showed that the average PTEs contents in the river sediments occurred in the following descending order of Cd < Co < Cr. The highest values of the Igeo, CF coefficients, i.e., the greatest impact of anthropogenic activities on the water environment of the Pisa River and its tributaries, were found especially in the case of Cd. The research on the plant material has shown that the highest content of Cr and Co occurs in the roots, then in the stems, and the least in the leaves of Glyceria maxima. However, the amounts of Cd in the examined parts of Glyceria maxima had similar values. The content of Cd, Cr, and Co in the roots and above-ground parts exceeded the physiological values. Glyceria maxima can be used as a biological indicator material. Statistical analyzes showed the movement of PTEs in the sediment-root-stem-leaf system and identified the sources of PTEs, i.e., municipal wastewater treatment plants, the local food industry, and surface runoff. |
---|