Cargando…
Predicting Future Geographic Hotspots of Potentially Preventable Hospitalisations Using All Subset Model Selection and Repeated K-Fold Cross-Validation
Long-term future prediction of geographic areas with high rates of potentially preventable hospitalisations (PPHs) among residents, or “hotspots”, is critical to ensure the effective location of place-based health service interventions. This is because such interventions are typically expensive and...
Autores principales: | Tuson, Matthew, Turlach, Berwin, Murray, Kevin, Kok, Mei Ruu, Vickery, Alistair, Whyatt, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508485/ https://www.ncbi.nlm.nih.gov/pubmed/34639555 http://dx.doi.org/10.3390/ijerph181910253 |
Ejemplares similares
-
Improving the Efficiency of Geographic Target Regions for Healthcare Interventions
por: Tuson, Matthew, et al.
Publicado: (2022) -
Data visualisation to support decision making and equitable healthcare service provision.
por: Whyatt, David, et al.
Publicado: (2017) -
Overcoming inefficiencies arising due to the impact of the modifiable areal unit problem on single-aggregation disease maps
por: Tuson, Matthew, et al.
Publicado: (2020) -
PEAC Events: identification of Predictable, Expensive, Avoidable, and Cardinal events within a learning health system.
por: Whyatt, David, et al.
Publicado: (2017) -
Modelling the Relationship between Rainfall and Mental Health Using Different Spatial and Temporal Units
por: Yap, Matthew, et al.
Publicado: (2021)