Cargando…
Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening
The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508669/ https://www.ncbi.nlm.nih.gov/pubmed/34638951 http://dx.doi.org/10.3390/ijms221910613 |
_version_ | 1784582152501854208 |
---|---|
author | Baburuna, Yulia Sotnikova, Linda Krestinina, Olga |
author_facet | Baburuna, Yulia Sotnikova, Linda Krestinina, Olga |
author_sort | Baburuna, Yulia |
collection | PubMed |
description | The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed that upon phosphorylation of proteins in some proteins, the degree of their phosphorylation increases with the opening of mPTP. Two isoforms of myelin basic protein and cyclic nucleotide phosphodiesterase were identified in rat brain non-synaptic mitochondria and it was concluded that they are involved in mPTP regulation. In the present study, using the mass spectrometry method, the phosphorylated protein was identified as Calpain 3 in rat brain non-synaptic mitochondria. In the present study, the phosphoprotein Calpain-3 (p94) (CAPN3) was identified in the rat brain mitochondria as a phosphorylated truncated form of p60–62 kDa by two-dimensional electrophoresis and mass spectrometry. We showed that the calpain inhibitor, calpeptin, was able to suppress the Ca(2+) efflux from mitochondria, preventing the opening of mPTP. It was found that phosphorylated truncated CALP3 with a molecular weight of 60–62 contains p-Tyr, which indicates the possible involvement of protein tyrosine phosphatase in this process. |
format | Online Article Text |
id | pubmed-8508669 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85086692021-10-13 Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening Baburuna, Yulia Sotnikova, Linda Krestinina, Olga Int J Mol Sci Article The protein phosphorylation of the membrane-bound mitochondrial proteins has become of interest from the point of view of its regulatory role of the function of the respiratory chain, opening of the mitochondrial permeability transition pore (mPTP), and initiation of apoptosis. Earlier, we noticed that upon phosphorylation of proteins in some proteins, the degree of their phosphorylation increases with the opening of mPTP. Two isoforms of myelin basic protein and cyclic nucleotide phosphodiesterase were identified in rat brain non-synaptic mitochondria and it was concluded that they are involved in mPTP regulation. In the present study, using the mass spectrometry method, the phosphorylated protein was identified as Calpain 3 in rat brain non-synaptic mitochondria. In the present study, the phosphoprotein Calpain-3 (p94) (CAPN3) was identified in the rat brain mitochondria as a phosphorylated truncated form of p60–62 kDa by two-dimensional electrophoresis and mass spectrometry. We showed that the calpain inhibitor, calpeptin, was able to suppress the Ca(2+) efflux from mitochondria, preventing the opening of mPTP. It was found that phosphorylated truncated CALP3 with a molecular weight of 60–62 contains p-Tyr, which indicates the possible involvement of protein tyrosine phosphatase in this process. MDPI 2021-09-30 /pmc/articles/PMC8508669/ /pubmed/34638951 http://dx.doi.org/10.3390/ijms221910613 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Baburuna, Yulia Sotnikova, Linda Krestinina, Olga Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening |
title | Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening |
title_full | Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening |
title_fullStr | Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening |
title_full_unstemmed | Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening |
title_short | Identification of Phosphorylated Calpain 3 in Rat Brain Mitochondria under mPTP Opening |
title_sort | identification of phosphorylated calpain 3 in rat brain mitochondria under mptp opening |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508669/ https://www.ncbi.nlm.nih.gov/pubmed/34638951 http://dx.doi.org/10.3390/ijms221910613 |
work_keys_str_mv | AT baburunayulia identificationofphosphorylatedcalpain3inratbrainmitochondriaundermptpopening AT sotnikovalinda identificationofphosphorylatedcalpain3inratbrainmitochondriaundermptpopening AT krestininaolga identificationofphosphorylatedcalpain3inratbrainmitochondriaundermptpopening |