Cargando…

The Small Molecule Fractions of Floccularia luteovirens Induce Apoptosis of NSCLC Cells through Activating Caspase-3 Activity

Floccularia luteovirens is a rare wild edible and medicinal fungus endemic to the Qinghai-Tibet Plateau. In this study, the hollow fiber membranes with molecular weights of 50 kDa, 6 kDa and 3 kDa were used to extract different fractions of F. luteovirens, which were named as #1, #2 and #3. Then the...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shuying, Gao, Jie, Hou, Lizhen, Gao, Yaxin, Sun, Jing, Zhang, Nana, Fan, Bei, Wang, Fengzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508712/
https://www.ncbi.nlm.nih.gov/pubmed/34638946
http://dx.doi.org/10.3390/ijms221910609
Descripción
Sumario:Floccularia luteovirens is a rare wild edible and medicinal fungus endemic to the Qinghai-Tibet Plateau. In this study, the hollow fiber membranes with molecular weights of 50 kDa, 6 kDa and 3 kDa were used to extract different fractions of F. luteovirens, which were named as #1, #2 and #3. Then the antitumor activity of these fractions on NSCLC cell lines, PC9 and NCI-H460, were investigated by using MTT assay, flow cytometry analysis and Western blot assay. The results indicated that the #2 and #3 fractions showed obviously inhibitory activities on PC9 and NCI-H460 tumor cells and proved that these small molecule fractions induced apoptosis of NSCLC cells by activating caspase-3. Finally, a total of 15 components, including six amino acids, two nucleosides, two glycosides, two terpenoids, one phenylpropanoid, one ester and one alkaloid, were identified in #2 and #3 fractions. This is the first evidence that the small molecule components of F. luteovirens were able to inhibit lung cancer by inducing apoptosis in a caspase-3 manner. The present study indicated the benefits of F. luteovirens in lung cancer treatment, which might be a potential resource of functional food and drugs.