Cargando…
Sustained Activation of TNFα-Induced DNA Damage Response in Newly Differentiated Adipocytes
The response to DNA damage is the mechanism that allows the interaction between stress signals, inflammatory secretions, DNA repair, and maintenance of cell and tissue homeostasis. Adipocyte dysfunction is the cellular trigger for various disease states such as insulin resistance, diabetes, and obes...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508732/ https://www.ncbi.nlm.nih.gov/pubmed/34638889 http://dx.doi.org/10.3390/ijms221910548 |
Sumario: | The response to DNA damage is the mechanism that allows the interaction between stress signals, inflammatory secretions, DNA repair, and maintenance of cell and tissue homeostasis. Adipocyte dysfunction is the cellular trigger for various disease states such as insulin resistance, diabetes, and obesity, among many others. Previously, our group demonstrated that adipogenesis per se, from mesenchymal/stromal stem cells derived from human adipose tissue (hASCs), involves an accumulation of DNA damage and a gradual loss of the repair capacity of oxidative DNA damage. Therefore, our objective was to identify whether healthy adipocytes differentiated for the first time from hASCs, when receiving inflammatory signals induced with TNFα, were able to persistently activate the DNA Damage Response and thus trigger adipocyte dysfunction. We found that TNFα at similar levels circulating in obese humans induce a sustained response to DNA damage response as part of the Senescence-Associated Secretory Phenotype. This mechanism shows the impact of inflammatory environment early affect adipocyte function, independently of aging. |
---|