Cargando…
Enteric Microbiota-Mediated Serotonergic Signaling in Pathogenesis of Irritable Bowel Syndrome
Irritable bowel syndrome (IBS) is a chronic functional disorder that affects the gastrointestinal tract. Details regarding the pathogenesis of IBS remain largely unknown, though the dysfunction of the brain-gut-microbiome (BGM) axis is a major etiological factor, in which neurotransmitters serve as...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8508930/ https://www.ncbi.nlm.nih.gov/pubmed/34638577 http://dx.doi.org/10.3390/ijms221910235 |
Sumario: | Irritable bowel syndrome (IBS) is a chronic functional disorder that affects the gastrointestinal tract. Details regarding the pathogenesis of IBS remain largely unknown, though the dysfunction of the brain-gut-microbiome (BGM) axis is a major etiological factor, in which neurotransmitters serve as a key communication tool between enteric microbiota and the brain. One of the most important neurotransmitters in the pathology of IBS is serotonin (5-HT), as it influences gastrointestinal motility, pain sensation, mucosal inflammation, immune responses, and brain activity, all of which shape IBS features. Genome-wide association studies discovered susceptible genes for IBS in serotonergic signaling pathways. In clinical practice, treatment strategies targeting 5-HT were effective for a certain portion of IBS cases. The synthesis of 5-HT in intestinal enterochromaffin cells and host serotonergic signaling is regulated by enteric resident microbiota. Dysbiosis can trigger IBS development, potentially through aberrant 5-HT signaling in the BGM axis; thus, the manipulation of the gut microbiota may be an alternative treatment strategy. However, precise information regarding the mechanisms underlying the microbiota-mediated intestinal serotonergic pathway related to the pathogenesis of IBS remains unclear. The present review summarizes current knowledge and recent progress in understanding microbiome–serotonin interaction in IBS cases. |
---|