Cargando…

Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40–80% more transmissible than Alpha, allowing Delta to beco...

Descripción completa

Detalles Bibliográficos
Autores principales: Earnest, Rebecca, Uddin, Rockib, Matluk, Nicholas, Renzette, Nicholas, Siddle, Katherine J., Loreth, Christine, Adams, Gordon, Tomkins-Tinch, Christopher H., Petrone, Mary E., Rothman, Jessica E., Breban, Mallery I., Koch, Robert Tobias, Billig, Kendall, Fauver, Joseph R., Vogels, Chantal B.F., Turbett, Sarah, Bilguvar, Kaya, De Kumar, Bony, Landry, Marie L., Peaper, David R., Kelly, Kevin, Omerza, Greg, Grieser, Heather, Meak, Sim, Martha, John, Dewey, Hannah H., Kales, Susan, Berenzy, Daniel, Carpenter-Azevedo, Kristin, King, Ewa, Huard, Richard C., Smole, Sandra C., Brown, Catherine M., Fink, Timelia, Lang, Andrew S., Gallagher, Glen R., Sabeti, Pardis C., Gabriel, Stacey, MacInnis, Bronwyn L., Tewhey, Ryan, Adams, Mark D., Park, Daniel J., Lemieux, Jacob E., Grubaugh, Nathan D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509091/
https://www.ncbi.nlm.nih.gov/pubmed/34642698
http://dx.doi.org/10.1101/2021.10.06.21264641
_version_ 1784582251544051712
author Earnest, Rebecca
Uddin, Rockib
Matluk, Nicholas
Renzette, Nicholas
Siddle, Katherine J.
Loreth, Christine
Adams, Gordon
Tomkins-Tinch, Christopher H.
Petrone, Mary E.
Rothman, Jessica E.
Breban, Mallery I.
Koch, Robert Tobias
Billig, Kendall
Fauver, Joseph R.
Vogels, Chantal B.F.
Turbett, Sarah
Bilguvar, Kaya
De Kumar, Bony
Landry, Marie L.
Peaper, David R.
Kelly, Kevin
Omerza, Greg
Grieser, Heather
Meak, Sim
Martha, John
Dewey, Hannah H.
Kales, Susan
Berenzy, Daniel
Carpenter-Azevedo, Kristin
King, Ewa
Huard, Richard C.
Smole, Sandra C.
Brown, Catherine M.
Fink, Timelia
Lang, Andrew S.
Gallagher, Glen R.
Sabeti, Pardis C.
Gabriel, Stacey
MacInnis, Bronwyn L.
Tewhey, Ryan
Adams, Mark D.
Park, Daniel J.
Lemieux, Jacob E.
Grubaugh, Nathan D.
author_facet Earnest, Rebecca
Uddin, Rockib
Matluk, Nicholas
Renzette, Nicholas
Siddle, Katherine J.
Loreth, Christine
Adams, Gordon
Tomkins-Tinch, Christopher H.
Petrone, Mary E.
Rothman, Jessica E.
Breban, Mallery I.
Koch, Robert Tobias
Billig, Kendall
Fauver, Joseph R.
Vogels, Chantal B.F.
Turbett, Sarah
Bilguvar, Kaya
De Kumar, Bony
Landry, Marie L.
Peaper, David R.
Kelly, Kevin
Omerza, Greg
Grieser, Heather
Meak, Sim
Martha, John
Dewey, Hannah H.
Kales, Susan
Berenzy, Daniel
Carpenter-Azevedo, Kristin
King, Ewa
Huard, Richard C.
Smole, Sandra C.
Brown, Catherine M.
Fink, Timelia
Lang, Andrew S.
Gallagher, Glen R.
Sabeti, Pardis C.
Gabriel, Stacey
MacInnis, Bronwyn L.
Tewhey, Ryan
Adams, Mark D.
Park, Daniel J.
Lemieux, Jacob E.
Grubaugh, Nathan D.
author_sort Earnest, Rebecca
collection PubMed
description The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40–80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta’s infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37–163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58–120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ~6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta’s enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.
format Online
Article
Text
id pubmed-8509091
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-85090912021-10-13 Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA Earnest, Rebecca Uddin, Rockib Matluk, Nicholas Renzette, Nicholas Siddle, Katherine J. Loreth, Christine Adams, Gordon Tomkins-Tinch, Christopher H. Petrone, Mary E. Rothman, Jessica E. Breban, Mallery I. Koch, Robert Tobias Billig, Kendall Fauver, Joseph R. Vogels, Chantal B.F. Turbett, Sarah Bilguvar, Kaya De Kumar, Bony Landry, Marie L. Peaper, David R. Kelly, Kevin Omerza, Greg Grieser, Heather Meak, Sim Martha, John Dewey, Hannah H. Kales, Susan Berenzy, Daniel Carpenter-Azevedo, Kristin King, Ewa Huard, Richard C. Smole, Sandra C. Brown, Catherine M. Fink, Timelia Lang, Andrew S. Gallagher, Glen R. Sabeti, Pardis C. Gabriel, Stacey MacInnis, Bronwyn L. Tewhey, Ryan Adams, Mark D. Park, Daniel J. Lemieux, Jacob E. Grubaugh, Nathan D. medRxiv Article The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40–80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta’s infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37–163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58–120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ~6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta’s enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations. Cold Spring Harbor Laboratory 2021-10-07 /pmc/articles/PMC8509091/ /pubmed/34642698 http://dx.doi.org/10.1101/2021.10.06.21264641 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Earnest, Rebecca
Uddin, Rockib
Matluk, Nicholas
Renzette, Nicholas
Siddle, Katherine J.
Loreth, Christine
Adams, Gordon
Tomkins-Tinch, Christopher H.
Petrone, Mary E.
Rothman, Jessica E.
Breban, Mallery I.
Koch, Robert Tobias
Billig, Kendall
Fauver, Joseph R.
Vogels, Chantal B.F.
Turbett, Sarah
Bilguvar, Kaya
De Kumar, Bony
Landry, Marie L.
Peaper, David R.
Kelly, Kevin
Omerza, Greg
Grieser, Heather
Meak, Sim
Martha, John
Dewey, Hannah H.
Kales, Susan
Berenzy, Daniel
Carpenter-Azevedo, Kristin
King, Ewa
Huard, Richard C.
Smole, Sandra C.
Brown, Catherine M.
Fink, Timelia
Lang, Andrew S.
Gallagher, Glen R.
Sabeti, Pardis C.
Gabriel, Stacey
MacInnis, Bronwyn L.
Tewhey, Ryan
Adams, Mark D.
Park, Daniel J.
Lemieux, Jacob E.
Grubaugh, Nathan D.
Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
title Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
title_full Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
title_fullStr Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
title_full_unstemmed Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
title_short Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
title_sort comparative transmissibility of sars-cov-2 variants delta and alpha in new england, usa
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509091/
https://www.ncbi.nlm.nih.gov/pubmed/34642698
http://dx.doi.org/10.1101/2021.10.06.21264641
work_keys_str_mv AT earnestrebecca comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT uddinrockib comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT matluknicholas comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT renzettenicholas comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT siddlekatherinej comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT lorethchristine comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT adamsgordon comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT tomkinstinchchristopherh comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT petronemarye comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT rothmanjessicae comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT brebanmalleryi comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT kochroberttobias comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT billigkendall comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT fauverjosephr comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT vogelschantalbf comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT turbettsarah comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT bilguvarkaya comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT dekumarbony comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT landrymariel comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT peaperdavidr comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT kellykevin comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT omerzagreg comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT grieserheather comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT meaksim comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT marthajohn comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT deweyhannahh comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT kalessusan comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT berenzydaniel comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT carpenterazevedokristin comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT kingewa comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT huardrichardc comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT smolesandrac comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT browncatherinem comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT finktimelia comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT langandrews comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT gallagherglenr comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT sabetipardisc comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT gabrielstacey comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT macinnisbronwynl comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT tewheyryan comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT adamsmarkd comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT parkdanielj comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT lemieuxjacobe comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa
AT grubaughnathand comparativetransmissibilityofsarscov2variantsdeltaandalphainnewenglandusa