Cargando…
Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material
In a number of circumstances, the Kachanov–Rabotnov isotropic creep damage constitutive model has been utilized to assess the creep deformation of high-temperature components. Secondary creep behavior is usually studied using analytical methods, whereas tertiary creep damage constants are determined...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509217/ https://www.ncbi.nlm.nih.gov/pubmed/34639910 http://dx.doi.org/10.3390/ma14195518 |
_version_ | 1784582283656691712 |
---|---|
author | Sattar, Mohsin Othman, Abdul Rahim Akhtar, Maaz Kamaruddin, Shahrul Khan, Rashid Masood, Faisal Alam, Mohammad Azad Azeem, Mohammad Mohsin, Sumiya |
author_facet | Sattar, Mohsin Othman, Abdul Rahim Akhtar, Maaz Kamaruddin, Shahrul Khan, Rashid Masood, Faisal Alam, Mohammad Azad Azeem, Mohammad Mohsin, Sumiya |
author_sort | Sattar, Mohsin |
collection | PubMed |
description | In a number of circumstances, the Kachanov–Rabotnov isotropic creep damage constitutive model has been utilized to assess the creep deformation of high-temperature components. Secondary creep behavior is usually studied using analytical methods, whereas tertiary creep damage constants are determined by the combination of experiments and numerical optimization. To obtain the tertiary creep damage constants, these methods necessitate extensive computational effort and time to determine the tertiary creep damage constants. In this study, a curve-fitting technique was proposed for applying the Kachanov–Rabotnov model into the built-in Norton–Bailey model in Abaqus. It extrapolates the creep behaviour by fitting the Kachanov–Rabotnov model to the limited creep data obtained from the Omega-Norton–Bailey regression model and then simulates beyond the available data points. Through the Omega creep model, several creep strain rates for SS-316 were calculated using API-579/ASME FFS-1 standards. These are dependent on the type of the material, the flow stress, and the temperature. In the present work, FEA creep assessment was carried out on the SS-316 dog bone specimen, which was used as a material coupon to forecast time-dependent permanent plastic deformation as well as creep behavior at elevated temperatures and under uniform stress. The model was validated with the help of published experimental creep test data, and data optimization for sensitivity study was conducted by applying response surface methodology (RSM) and ANOVA techniques. The results showed that the specimen underwent secondary creep deformation for most of the analysis period. Hence, the method is useful in predicting the complete creep behavior of the material and in generating a creep curve. |
format | Online Article Text |
id | pubmed-8509217 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85092172021-10-13 Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material Sattar, Mohsin Othman, Abdul Rahim Akhtar, Maaz Kamaruddin, Shahrul Khan, Rashid Masood, Faisal Alam, Mohammad Azad Azeem, Mohammad Mohsin, Sumiya Materials (Basel) Article In a number of circumstances, the Kachanov–Rabotnov isotropic creep damage constitutive model has been utilized to assess the creep deformation of high-temperature components. Secondary creep behavior is usually studied using analytical methods, whereas tertiary creep damage constants are determined by the combination of experiments and numerical optimization. To obtain the tertiary creep damage constants, these methods necessitate extensive computational effort and time to determine the tertiary creep damage constants. In this study, a curve-fitting technique was proposed for applying the Kachanov–Rabotnov model into the built-in Norton–Bailey model in Abaqus. It extrapolates the creep behaviour by fitting the Kachanov–Rabotnov model to the limited creep data obtained from the Omega-Norton–Bailey regression model and then simulates beyond the available data points. Through the Omega creep model, several creep strain rates for SS-316 were calculated using API-579/ASME FFS-1 standards. These are dependent on the type of the material, the flow stress, and the temperature. In the present work, FEA creep assessment was carried out on the SS-316 dog bone specimen, which was used as a material coupon to forecast time-dependent permanent plastic deformation as well as creep behavior at elevated temperatures and under uniform stress. The model was validated with the help of published experimental creep test data, and data optimization for sensitivity study was conducted by applying response surface methodology (RSM) and ANOVA techniques. The results showed that the specimen underwent secondary creep deformation for most of the analysis period. Hence, the method is useful in predicting the complete creep behavior of the material and in generating a creep curve. MDPI 2021-09-23 /pmc/articles/PMC8509217/ /pubmed/34639910 http://dx.doi.org/10.3390/ma14195518 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Sattar, Mohsin Othman, Abdul Rahim Akhtar, Maaz Kamaruddin, Shahrul Khan, Rashid Masood, Faisal Alam, Mohammad Azad Azeem, Mohammad Mohsin, Sumiya Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material |
title | Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material |
title_full | Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material |
title_fullStr | Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material |
title_full_unstemmed | Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material |
title_short | Curve Fitting for Damage Evolution through Regression Analysis for the Kachanov–Rabotnov Model to the Norton–Bailey Creep Law of SS-316 Material |
title_sort | curve fitting for damage evolution through regression analysis for the kachanov–rabotnov model to the norton–bailey creep law of ss-316 material |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509217/ https://www.ncbi.nlm.nih.gov/pubmed/34639910 http://dx.doi.org/10.3390/ma14195518 |
work_keys_str_mv | AT sattarmohsin curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT othmanabdulrahim curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT akhtarmaaz curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT kamaruddinshahrul curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT khanrashid curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT masoodfaisal curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT alammohammadazad curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT azeemmohammad curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material AT mohsinsumiya curvefittingfordamageevolutionthroughregressionanalysisforthekachanovrabotnovmodeltothenortonbaileycreeplawofss316material |