Cargando…
Spectral Transmission of the Human Corneal Layers
We have assessed the spectral transmittance of the different layers of the human cornea in the ultraviolet (UV), visible, and near-infrared (IR) spectral ranges. Seventy-four corneal sample donors were included in the study. Firstly, the corneal transmittance was measured using a spectrophotometer....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509317/ https://www.ncbi.nlm.nih.gov/pubmed/34640506 http://dx.doi.org/10.3390/jcm10194490 |
_version_ | 1784582309763088384 |
---|---|
author | Peris-Martínez, Cristina García-Domene, Mari Carmen Penadés, Mariola Luque, María Josefa Fernández-López, Ester Artigas, José María |
author_facet | Peris-Martínez, Cristina García-Domene, Mari Carmen Penadés, Mariola Luque, María Josefa Fernández-López, Ester Artigas, José María |
author_sort | Peris-Martínez, Cristina |
collection | PubMed |
description | We have assessed the spectral transmittance of the different layers of the human cornea in the ultraviolet (UV), visible, and near-infrared (IR) spectral ranges. Seventy-four corneal sample donors were included in the study. Firstly, the corneal transmittance was measured using a spectrophotometer. Then, all samples were fixed for histopathological analysis, which allowed us to measure the thickness of each corneal layer. Finally, the absorption coefficients of the corneal layers were computed by a linear model reproducing total transmittance. The results show that corneal transmission was almost in unity at the visible and IR ranges but not at the UV range, in which the layer with higher transmission is Descemet’s membrane, whereas the stroma showed the lowest transmittance. Regarding the absorption coefficient, the most absorptive tissue was Bowman’s layer, followed by the endothelium. Variations on transmittance due to changes in the stroma, Bowman’s layer, or Descemet layer were simulated, and important transmission increases were found due to stroma and Bowman changes. To conclude, we have developed a method to measure the transmittance and thickness for each corneal layer. All corneal layers absorb UV light to a greater or lesser extent. The absorption coefficient is higher for Bowman’s layer, while the stroma is the layer with the lowest transmittance due to its thickness. Variations in stroma thickness or changes in the corneal tissue of Bowman’s layer or the endothelium layer due to some pathologies or surgeries could affect, to a greater or lesser degree, the total transmission of the cornea. Thus, obtaining accurate absorption coefficients for different layers would help us to predict and compensate these changes. |
format | Online Article Text |
id | pubmed-8509317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85093172021-10-13 Spectral Transmission of the Human Corneal Layers Peris-Martínez, Cristina García-Domene, Mari Carmen Penadés, Mariola Luque, María Josefa Fernández-López, Ester Artigas, José María J Clin Med Article We have assessed the spectral transmittance of the different layers of the human cornea in the ultraviolet (UV), visible, and near-infrared (IR) spectral ranges. Seventy-four corneal sample donors were included in the study. Firstly, the corneal transmittance was measured using a spectrophotometer. Then, all samples were fixed for histopathological analysis, which allowed us to measure the thickness of each corneal layer. Finally, the absorption coefficients of the corneal layers were computed by a linear model reproducing total transmittance. The results show that corneal transmission was almost in unity at the visible and IR ranges but not at the UV range, in which the layer with higher transmission is Descemet’s membrane, whereas the stroma showed the lowest transmittance. Regarding the absorption coefficient, the most absorptive tissue was Bowman’s layer, followed by the endothelium. Variations on transmittance due to changes in the stroma, Bowman’s layer, or Descemet layer were simulated, and important transmission increases were found due to stroma and Bowman changes. To conclude, we have developed a method to measure the transmittance and thickness for each corneal layer. All corneal layers absorb UV light to a greater or lesser extent. The absorption coefficient is higher for Bowman’s layer, while the stroma is the layer with the lowest transmittance due to its thickness. Variations in stroma thickness or changes in the corneal tissue of Bowman’s layer or the endothelium layer due to some pathologies or surgeries could affect, to a greater or lesser degree, the total transmission of the cornea. Thus, obtaining accurate absorption coefficients for different layers would help us to predict and compensate these changes. MDPI 2021-09-29 /pmc/articles/PMC8509317/ /pubmed/34640506 http://dx.doi.org/10.3390/jcm10194490 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Peris-Martínez, Cristina García-Domene, Mari Carmen Penadés, Mariola Luque, María Josefa Fernández-López, Ester Artigas, José María Spectral Transmission of the Human Corneal Layers |
title | Spectral Transmission of the Human Corneal Layers |
title_full | Spectral Transmission of the Human Corneal Layers |
title_fullStr | Spectral Transmission of the Human Corneal Layers |
title_full_unstemmed | Spectral Transmission of the Human Corneal Layers |
title_short | Spectral Transmission of the Human Corneal Layers |
title_sort | spectral transmission of the human corneal layers |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509317/ https://www.ncbi.nlm.nih.gov/pubmed/34640506 http://dx.doi.org/10.3390/jcm10194490 |
work_keys_str_mv | AT perismartinezcristina spectraltransmissionofthehumancorneallayers AT garciadomenemaricarmen spectraltransmissionofthehumancorneallayers AT penadesmariola spectraltransmissionofthehumancorneallayers AT luquemariajosefa spectraltransmissionofthehumancorneallayers AT fernandezlopezester spectraltransmissionofthehumancorneallayers AT artigasjosemaria spectraltransmissionofthehumancorneallayers |