Cargando…
Application of an Exploratory Knowledge-Discovery Pipeline Based on Machine Learning to Multi-Scale OMICS Data to Characterise Myocardial Injury in a Cohort of Patients with Septic Shock: An Observational Study
Currently, there is no therapy targeting septic cardiomyopathy (SC), a key contributor to organ dysfunction in sepsis. In this study, we used a machine learning (ML) pipeline to explore transcriptomic, proteomic, and metabolomic data from patients with septic shock, and prospectively collected measu...
Autores principales: | Bollen Pinto, Bernardo, Ribas Ripoll, Vicent, Subías-Beltrán, Paula, Herpain, Antoine, Barlassina, Cristina, Oliveira, Eliandre, Pastorelli, Roberta, Braga, Daniele, Barcella, Matteo, Subirats, Laia, Bauzá-Martinez, Julia, Odena, Antonia, Ferrario, Manuela, Baselli, Giuseppe, Aletti, Federico, Bendjelid, Karim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509561/ https://www.ncbi.nlm.nih.gov/pubmed/34640372 http://dx.doi.org/10.3390/jcm10194354 |
Ejemplares similares
-
ShockOmics: multiscale approach to the identification of molecular biomarkers in acute heart failure induced by shock
por: Aletti, Federico, et al.
Publicado: (2016) -
A longitudinal study highlights shared aspects of the transcriptomic response to cardiogenic and septic shock
por: Braga, Daniele, et al.
Publicado: (2019) -
Feature selection for the accurate prediction of septic and cardiogenic shock ICU mortality in the acute phase
por: Aushev, Alexander, et al.
Publicado: (2018) -
Identification of a transcriptome profile associated with improvement of organ function in septic shock patients after early supportive therapy
por: Barcella, Matteo, et al.
Publicado: (2018) -
An Innovative Approach for The Integration of Proteomics and Metabolomics Data In Severe Septic Shock Patients Stratified for Mortality
por: Cambiaghi, Alice, et al.
Publicado: (2018)