Cargando…

Anisotropic Mechanical Response and Strain Localization of a Metallic Glassy-Fiber-Reinforced Polyethylene Terephthalate Fabric

Optimizing the mechanical properties of composites through microstructural design has been a long-standing issue in materials science. In this study, we reinforced a typical polymer, i.e., polyethylene-terephthalate-woven fabric, with a type of Fe-based metallic glassy fiber (MGF) with an extremely...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jie, Huang, Bo, Shen, Jun, Yi, Jun, Jia, Yandong, Xue, Rongjie, Wang, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509627/
https://www.ncbi.nlm.nih.gov/pubmed/34640018
http://dx.doi.org/10.3390/ma14195619
Descripción
Sumario:Optimizing the mechanical properties of composites through microstructural design has been a long-standing issue in materials science. In this study, we reinforced a typical polymer, i.e., polyethylene-terephthalate-woven fabric, with a type of Fe-based metallic glassy fiber (MGF) with an extremely large Young’s moduli. The MGF-reinforced fabrics, with three different fiber bundle orientations (0°, 45°, and 90°), were investigated by in situ electron-microscopy mechanical testing techniques in conjunction with a digital image correlation (DIC) technique. The fabrics exhibited a pronounced anisotropic mechanical response, and the associated characteristics were verified to depend on the fiber bundle orientation relative to the external load. Furthermore, localized strains near the intersections of the fiber bundles were found to be much higher than the global strain. It is confirmed that the restriction from warp to weft is the dominant factor influencing strain localization during deformation. Our results are enlightening for understanding the fracture mechanisms of composites.