Cargando…

Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste

There is considerable attention devoted to the use of agricultural waste as a raw material substitute for commercial silica in the development of borosilicate glasses doped with rare earth oxides. Here, we present a novel structure for borosilicate glasses made from rice husk ash with a 25% molar ra...

Descripción completa

Detalles Bibliográficos
Autores principales: Alhodaib, Aiyeshah, Ibrahim, Omnia, Abd El All, Suzy, Ezzeldin, Fatthy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509821/
https://www.ncbi.nlm.nih.gov/pubmed/34640004
http://dx.doi.org/10.3390/ma14195607
_version_ 1784582437079089152
author Alhodaib, Aiyeshah
Ibrahim, Omnia
Abd El All, Suzy
Ezzeldin, Fatthy
author_facet Alhodaib, Aiyeshah
Ibrahim, Omnia
Abd El All, Suzy
Ezzeldin, Fatthy
author_sort Alhodaib, Aiyeshah
collection PubMed
description There is considerable attention devoted to the use of agricultural waste as a raw material substitute for commercial silica in the development of borosilicate glasses doped with rare earth oxides. Here, we present a novel structure for borosilicate glasses made from rice husk ash with a 25% molar ratio of extracted SiO(2) and doped with neodymium (GRN) or dysprosium (GRD). Adding rare earth oxides to borosilicate glasses by the melt quenching method enhanced optical transmission due to the presence of their tetrahedral geometries. GRN samples showed few bands near zero, which constitutes good utility for band rejection filters in image devices, and the samples exhibited energy values ranging from 3.03 to 3.00 eV before and after gamma irradiation. Optical transmissions of GRD samples showed peaks at 25,974, 22,172, 13,333, 11,273, 9302, 7987, and 6042 cm(−1). Deterioration in transmittance was observed when the investigated samples were exposed to irradiation doses of 20 and 50 kGy in the wavenumber range of 12,500 to 50,000 cm(−1); however, different behaviors after irradiation with 50 kGy caused an increase in transparency in comparison to 20 kGy irradiation, which was pronounced for higher wavenumbers (greater than 12,500 cm(−1)). Photoluminescence emission and excitation spectra of the glass-doped Nd(3+) (GRN) and glass-doped Dy(3+) (GRD) samples were determined. GRD exhibited emission in the blue and yellow regions of the visible spectrum, which gave a white flash of light. Chromaticity coordinate (CIE) measurements of GRD samples indicated the origin of its luminous color relative to the standard white light region.
format Online
Article
Text
id pubmed-8509821
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85098212021-10-13 Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste Alhodaib, Aiyeshah Ibrahim, Omnia Abd El All, Suzy Ezzeldin, Fatthy Materials (Basel) Article There is considerable attention devoted to the use of agricultural waste as a raw material substitute for commercial silica in the development of borosilicate glasses doped with rare earth oxides. Here, we present a novel structure for borosilicate glasses made from rice husk ash with a 25% molar ratio of extracted SiO(2) and doped with neodymium (GRN) or dysprosium (GRD). Adding rare earth oxides to borosilicate glasses by the melt quenching method enhanced optical transmission due to the presence of their tetrahedral geometries. GRN samples showed few bands near zero, which constitutes good utility for band rejection filters in image devices, and the samples exhibited energy values ranging from 3.03 to 3.00 eV before and after gamma irradiation. Optical transmissions of GRD samples showed peaks at 25,974, 22,172, 13,333, 11,273, 9302, 7987, and 6042 cm(−1). Deterioration in transmittance was observed when the investigated samples were exposed to irradiation doses of 20 and 50 kGy in the wavenumber range of 12,500 to 50,000 cm(−1); however, different behaviors after irradiation with 50 kGy caused an increase in transparency in comparison to 20 kGy irradiation, which was pronounced for higher wavenumbers (greater than 12,500 cm(−1)). Photoluminescence emission and excitation spectra of the glass-doped Nd(3+) (GRN) and glass-doped Dy(3+) (GRD) samples were determined. GRD exhibited emission in the blue and yellow regions of the visible spectrum, which gave a white flash of light. Chromaticity coordinate (CIE) measurements of GRD samples indicated the origin of its luminous color relative to the standard white light region. MDPI 2021-09-27 /pmc/articles/PMC8509821/ /pubmed/34640004 http://dx.doi.org/10.3390/ma14195607 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Alhodaib, Aiyeshah
Ibrahim, Omnia
Abd El All, Suzy
Ezzeldin, Fatthy
Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste
title Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste
title_full Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste
title_fullStr Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste
title_full_unstemmed Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste
title_short Effect of Rare-Earth Ions on the Optical and PL Properties of Novel Borosilicate Glass Developed from Agricultural Waste
title_sort effect of rare-earth ions on the optical and pl properties of novel borosilicate glass developed from agricultural waste
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509821/
https://www.ncbi.nlm.nih.gov/pubmed/34640004
http://dx.doi.org/10.3390/ma14195607
work_keys_str_mv AT alhodaibaiyeshah effectofrareearthionsontheopticalandplpropertiesofnovelborosilicateglassdevelopedfromagriculturalwaste
AT ibrahimomnia effectofrareearthionsontheopticalandplpropertiesofnovelborosilicateglassdevelopedfromagriculturalwaste
AT abdelallsuzy effectofrareearthionsontheopticalandplpropertiesofnovelborosilicateglassdevelopedfromagriculturalwaste
AT ezzeldinfatthy effectofrareearthionsontheopticalandplpropertiesofnovelborosilicateglassdevelopedfromagriculturalwaste