Cargando…
Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease
Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson’s disease (PD). Wearable FOG identification systems can improve gait and reduce the risk of falling due to FOG by detecting FOG in real-time and providing a cue to reduce freeze duration. However, FOG...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509886/ https://www.ncbi.nlm.nih.gov/pubmed/34637473 http://dx.doi.org/10.1371/journal.pone.0258544 |
_version_ | 1784582452940898304 |
---|---|
author | Pardoel, Scott Shalin, Gaurav Lemaire, Edward D. Kofman, Jonathan Nantel, Julie |
author_facet | Pardoel, Scott Shalin, Gaurav Lemaire, Edward D. Kofman, Jonathan Nantel, Julie |
author_sort | Pardoel, Scott |
collection | PubMed |
description | Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson’s disease (PD). Wearable FOG identification systems can improve gait and reduce the risk of falling due to FOG by detecting FOG in real-time and providing a cue to reduce freeze duration. However, FOG prediction and prevention is desirable. Datasets used to train machine learning models often generate ground truth FOG labels based on visual observation of specific lower limb movements (event-based definition) or an overall inability to walk effectively (period of gait disruption based definition). FOG definition ambiguity may affect model performance, especially with respect to multiple FOG in rapid succession. This research examined whether merging multiple freezes that occurred in rapid succession could improve FOG detection and prediction model performance. Plantar pressure and lower limb acceleration data were used to extract a feature set and train decision tree ensembles. FOG was labeled using an event-based definition. Additional datasets were then produced by merging FOG that occurred in rapid succession. A merging threshold was introduced where FOG that were separated by less than the merging threshold were merged into one episode. FOG detection and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging slightly improved FOG detection model performance; however, for the prediction model, merging resulted in slightly later FOG identification and lower precision. FOG prediction models may benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid succession. |
format | Online Article Text |
id | pubmed-8509886 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85098862021-10-13 Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease Pardoel, Scott Shalin, Gaurav Lemaire, Edward D. Kofman, Jonathan Nantel, Julie PLoS One Research Article Freezing of gait (FOG) is an intermittent walking disturbance experienced by people with Parkinson’s disease (PD). Wearable FOG identification systems can improve gait and reduce the risk of falling due to FOG by detecting FOG in real-time and providing a cue to reduce freeze duration. However, FOG prediction and prevention is desirable. Datasets used to train machine learning models often generate ground truth FOG labels based on visual observation of specific lower limb movements (event-based definition) or an overall inability to walk effectively (period of gait disruption based definition). FOG definition ambiguity may affect model performance, especially with respect to multiple FOG in rapid succession. This research examined whether merging multiple freezes that occurred in rapid succession could improve FOG detection and prediction model performance. Plantar pressure and lower limb acceleration data were used to extract a feature set and train decision tree ensembles. FOG was labeled using an event-based definition. Additional datasets were then produced by merging FOG that occurred in rapid succession. A merging threshold was introduced where FOG that were separated by less than the merging threshold were merged into one episode. FOG detection and prediction models were trained for merging thresholds of 0, 1, 2, and 3 s. Merging slightly improved FOG detection model performance; however, for the prediction model, merging resulted in slightly later FOG identification and lower precision. FOG prediction models may benefit from using event-based FOG definitions and avoiding merging multiple FOG in rapid succession. Public Library of Science 2021-10-12 /pmc/articles/PMC8509886/ /pubmed/34637473 http://dx.doi.org/10.1371/journal.pone.0258544 Text en © 2021 Pardoel et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Pardoel, Scott Shalin, Gaurav Lemaire, Edward D. Kofman, Jonathan Nantel, Julie Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease |
title | Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease |
title_full | Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease |
title_fullStr | Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease |
title_full_unstemmed | Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease |
title_short | Grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in Parkinson’s disease |
title_sort | grouping successive freezing of gait episodes has neutral to detrimental effect on freeze detection and prediction in parkinson’s disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509886/ https://www.ncbi.nlm.nih.gov/pubmed/34637473 http://dx.doi.org/10.1371/journal.pone.0258544 |
work_keys_str_mv | AT pardoelscott groupingsuccessivefreezingofgaitepisodeshasneutraltodetrimentaleffectonfreezedetectionandpredictioninparkinsonsdisease AT shalingaurav groupingsuccessivefreezingofgaitepisodeshasneutraltodetrimentaleffectonfreezedetectionandpredictioninparkinsonsdisease AT lemaireedwardd groupingsuccessivefreezingofgaitepisodeshasneutraltodetrimentaleffectonfreezedetectionandpredictioninparkinsonsdisease AT kofmanjonathan groupingsuccessivefreezingofgaitepisodeshasneutraltodetrimentaleffectonfreezedetectionandpredictioninparkinsonsdisease AT nanteljulie groupingsuccessivefreezingofgaitepisodeshasneutraltodetrimentaleffectonfreezedetectionandpredictioninparkinsonsdisease |