Cargando…
Development and validation of a deep learning model to screen hypokalemia from electrocardiogram in emergency patients
BACKGROUND: A deep learning model (DLM) that enables non-invasive hypokalemia screening from an electrocardiogram (ECG) may improve the detection of this life-threatening condition. This study aimed to develop and evaluate the performance of a DLM for the detection of hypokalemia from the ECGs of em...
Autores principales: | Wang, Chen-Xi, Zhang, Yi-Chu, Kong, Qi-Lin, Wu, Zu-Xiang, Yang, Ping-Ping, Zhu, Cai-Hua, Chen, Shou-Lin, Wu, Tao, Wu, Qing-Hua, Chen, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8509898/ https://www.ncbi.nlm.nih.gov/pubmed/34483253 http://dx.doi.org/10.1097/CM9.0000000000001650 |
Ejemplares similares
-
Type 1 Brugada pattern electrocardiogram induced by hypokalemia
por: Swe, Thein, et al.
Publicado: (2016) -
A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development
por: Lin, Chin-Sheng, et al.
Publicado: (2020) -
A Practical Approach to Genetic Hypokalemia
por: Lin, Shih-Hua, et al.
Publicado: (2010) -
The history, hotspots, and trends of electrocardiogram
por: Yang, Xiang-Lin, et al.
Publicado: (2015) -
Toxic Leukoencephalopathy and Hypokalemia Due to Exposure to Trimethyltin
por: Wang, Zigao, et al.
Publicado: (2017)