Cargando…
Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement
Growing concerns on global industrial greenhouse gas emissions have boosted research for developing alternative, less CO(2) intensive binders for partial to complete replacement of ordinary Portland cement (OPC) clinker. Unlike slag and pozzolanic siliceous low-Ca class F fly ashes, the Ca- and S-ri...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510179/ https://www.ncbi.nlm.nih.gov/pubmed/34640194 http://dx.doi.org/10.3390/ma14195798 |
_version_ | 1784582513886232576 |
---|---|
author | Paaver, Peeter Järvik, Oliver Kirsimäe, Kalle |
author_facet | Paaver, Peeter Järvik, Oliver Kirsimäe, Kalle |
author_sort | Paaver, Peeter |
collection | PubMed |
description | Growing concerns on global industrial greenhouse gas emissions have boosted research for developing alternative, less CO(2) intensive binders for partial to complete replacement of ordinary Portland cement (OPC) clinker. Unlike slag and pozzolanic siliceous low-Ca class F fly ashes, the Ca- and S-rich class C ashes, particularly these formed in circulating fluidised bed combustion (CFBC) boilers, are typically not considered as viable cementitious materials for blending with or substituting the OPC. We studied the physical, chemical-mineralogical characteristics of the mechanically activated Ca-rich CFBC fly ash pastes and mortars with high volume OPC substitution rates to find potential alternatives for OPC in building materials and composites. Our findings indicate that compressive strength of pastes and mortars made with partial to complete replacement of the mechanically activated CFBC ash to OPC is comparable to OPC concrete, showing compared to OPC pastes reduction in compressive strength only by <10% at 50% and <20% at 75% replacement rates. Our results show that mechanically activated Ca-rich CFBC fly ash can be successfully used as an alternative CSA-cement type binder. |
format | Online Article Text |
id | pubmed-8510179 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85101792021-10-13 Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement Paaver, Peeter Järvik, Oliver Kirsimäe, Kalle Materials (Basel) Article Growing concerns on global industrial greenhouse gas emissions have boosted research for developing alternative, less CO(2) intensive binders for partial to complete replacement of ordinary Portland cement (OPC) clinker. Unlike slag and pozzolanic siliceous low-Ca class F fly ashes, the Ca- and S-rich class C ashes, particularly these formed in circulating fluidised bed combustion (CFBC) boilers, are typically not considered as viable cementitious materials for blending with or substituting the OPC. We studied the physical, chemical-mineralogical characteristics of the mechanically activated Ca-rich CFBC fly ash pastes and mortars with high volume OPC substitution rates to find potential alternatives for OPC in building materials and composites. Our findings indicate that compressive strength of pastes and mortars made with partial to complete replacement of the mechanically activated CFBC ash to OPC is comparable to OPC concrete, showing compared to OPC pastes reduction in compressive strength only by <10% at 50% and <20% at 75% replacement rates. Our results show that mechanically activated Ca-rich CFBC fly ash can be successfully used as an alternative CSA-cement type binder. MDPI 2021-10-03 /pmc/articles/PMC8510179/ /pubmed/34640194 http://dx.doi.org/10.3390/ma14195798 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Paaver, Peeter Järvik, Oliver Kirsimäe, Kalle Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement |
title | Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement |
title_full | Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement |
title_fullStr | Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement |
title_full_unstemmed | Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement |
title_short | Design of High Volume CFBC Fly Ash Based Calcium Sulphoaluminate Type Binder in Mixtures with Ordinary Portland Cement |
title_sort | design of high volume cfbc fly ash based calcium sulphoaluminate type binder in mixtures with ordinary portland cement |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510179/ https://www.ncbi.nlm.nih.gov/pubmed/34640194 http://dx.doi.org/10.3390/ma14195798 |
work_keys_str_mv | AT paaverpeeter designofhighvolumecfbcflyashbasedcalciumsulphoaluminatetypebinderinmixtureswithordinaryportlandcement AT jarvikoliver designofhighvolumecfbcflyashbasedcalciumsulphoaluminatetypebinderinmixtureswithordinaryportlandcement AT kirsimaekalle designofhighvolumecfbcflyashbasedcalciumsulphoaluminatetypebinderinmixtureswithordinaryportlandcement |