Cargando…

Scaling Up the Process of Titanium Dioxide Nanotube Synthesis and Its Effect on Photoelectrochemical Properties

In this work, for the first time, the influence of scaling up the process of titanium dioxide nanotube (TiO(2)NT) synthesis on the photoelectrochemical properties of TiO(2) nanotubes is presented. Titanium dioxide nanotubes were obtained on substrates of various sizes: 2 × 2, 4 × 4, 5 × 5, 6 × 6, an...

Descripción completa

Detalles Bibliográficos
Autores principales: Szkoda, Mariusz, Trzciński, Konrad, Zarach, Zuzanna, Roda, Daria, Łapiński, Marcin, Nowak, Andrzej P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8510213/
https://www.ncbi.nlm.nih.gov/pubmed/34640082
http://dx.doi.org/10.3390/ma14195686
Descripción
Sumario:In this work, for the first time, the influence of scaling up the process of titanium dioxide nanotube (TiO(2)NT) synthesis on the photoelectrochemical properties of TiO(2) nanotubes is presented. Titanium dioxide nanotubes were obtained on substrates of various sizes: 2 × 2, 4 × 4, 5 × 5, 6 × 6, and 8 × 8 cm(2). The electrode material was characterized using scanning electron microscopy as well as Raman and UV–vis spectroscopy in order to investigate their morphology, crystallinity, and absorbance ability, respectively. The obtained electrodes were used as photoanodes for the photoelectrochemical water splitting. The surface analysis was performed, and photocurrent values were determined depending on their place on the sample. Interestingly, the values of the obtained photocurrent densities in the center of each sample were similar and were about 80 µA·cm(2). The results of our work show evidence of a significant contribution to wider applications of materials based on TiO(2) nanotubes not only in photoelectrochemistry but also in medicine, supercapacitors, and sensors.